首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties and morphology of blends prepared from polypropylene (PP) and 5–20 wt% of regenerated tire-rubber (RgR) were studied. The samples were prepared in a twin-screw extruder. The addition of maleic anhydride-functionalized polypropylene (PP-g-MAH) was also investigated. Tensile and flexural moduli, tensile strength at break, elongation at break and Izod impact resistance at 23°C were increased by the addition of 15 wt% of regenerated rubber and 5 wt% of PP-g-MAH. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses showed some interaction between PP and RgR and considerable modification of the compatibilized mixture morphology. The fracture surface of the blend with PP-g-MAH showed a better interaction between the PP matrix and the regenerated rubber domains, for all blends. Well-dispersed particles of the rubber in the polypropylene matrix were observed. DSC showed that PP crystallizes on cooling at lower temperatures as the RgR content increases. The decrease in crystallization temperature is more evident for blends with 5 wt% PP-g-MAH.  相似文献   

2.
Morphological, thermal and mechanical properties of blends prepared from polypropylene (PP) and 1, 3 and 5 wt% of vermiculite (VMT) were studied. The samples were prepared in a twin-screw extruder. The addition of maleic anhydride-functionalized polypropylene (PP-g-MAH) was also investigated. The blend morphologies were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal properties of the composites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed that PP crystallizes on cooling at higher temperatures as VMT content increases. The increase in crystallization temperature was most evident for blends with 5 wt% VMT. The TGA results showed that the use of VMT particles to fill polypropylene increased the thermal stability of the composite. The mechanical properties, tensile modulus and tensile strength at yield point of the PP improved by the presence of VMT.  相似文献   

3.
Ternary blends of polypropylene (PP), nylon 6 (N6) and polypropylene grafted with maleic anhydride (PP/N6/PP-g-MAH) as compatibilizer with up to 50 wt% of N6 were investigated. PP-g-MAH content was varied from 2.5 to 10%. Blends of the two polymers PP/N6 (80/20) without the compatibilizer were also prepared using an internal batch mixer and studied. The ternary blends showed different rheological properties at low and high shear rates. The difference depended on the amount of N6 dispersed phase. Co-continuous morphology was observed for the blend containing 50% N6. This blend also exhibited higher viscosity at low shear rate and lower viscosity at high shear rates than the value calculated by the simple rule of mixture. At higher shear rates, viscosity was lower than that given by the rule of mixture for all blend ratios. An increase in viscosity was observed in the 80/20 PP/N6 blend after the concentration of the interfacial agent (PP-g-MAH) was increased. Polyblends containing up to 30% N6 could be successfully melt spun into fibers. DSC results showed that dispersed and matrix phases in the fiber maintained crystallinity comparable to or better than the corresponding values found in the neat fibers. The dispersed phase was found to contain fibrils. By using SEM and LSCM analyses we were able to show that the N6 droplets coalesced during melt spinning which led to the development of fibrillar morphology.  相似文献   

4.
This work deals with the effect of compatibilizer on the morphological, thermal, rheological, and mechanical properties of polypropylene/polycarbonate (PP/ PC) blends. The blends, containing between 0 to 30 vol % of polycarbonate and a compatibilizer, were prepared by means of a twin-screw extruder. The compatibilizer was produced by grafting glycidyl methacrylate (GMA) onto polypropylene in the molten state. Blend morphologies were controlled by adding PP-g-GMA as compatibilizer during melt processing, thus changing dispersion and interfacial adhesion of the polycarbonate phase. With PP-g-GMA, volume fractions increased from 2.5 to 20, and much finer dispersions of discrete polycarbonate phase with average domain sizes decreased from 35 to 3 μm were obtained. The WAXD spectra showed that the crystal structure of neat PP was different from that in blends. The DSC results suggested that the degree of crystallization of PP in blends decreased as PC content and compatibilizer increased. The mechanical properties significantly changed after addition of PP-g-GMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1857–1863, 1997  相似文献   

5.
Dong Wang 《Polymer》2006,47(23):7859-7863
A novel strategy for compatibilization of ternary polymer blends was described. PP (polyolefins)/PA6 (engineering plastics)/PS (styrene polymers) was selected as a model ternary blend system, and the compatibilization effect was investigated by means of SEM, rheometer, dynamic mechanical thermal analysis and mechanical testing. The results indicated that, as a ternary polymer blend compatibilizer, styrene and maleic anhydride dual monomers melt grafted polypropylene [PP-g-(MAH-co-St)] showed more effective compatibilization in the PP/PA6/PS ternary blend system than PP-g-MAH, PP-g-St and their mixture. The good compatibilizing effect of PP-g-(MAH-co-St) can be explained by two mechanisms. One is the in situ formation of [PP-g-(MAH-co-St)]-g-PA6 copolymer at the PP/PA6 interface, and the other is that it also contains styrene blocks, resulting in chemical affinity with PS and PP homopolymers.  相似文献   

6.
The objective of this work is to study the properties of blends that could result from the recycling of end-of-life vehicles (ELV). While ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) have been used extensively as elastomeric additives in poly(propylene) (PP), they can be substituted by ethylene-1-octene copolymer (EOC). As a consequence, the matter resulting from the sorting of ELV might be more complex and made of PP, EPR, and EOC. The effect of incorporating EOC [that is a polyethylene elastomer (PEE)] and maleic anhydride grafted polypropylene (PP-g-MAH) on the rheological, thermal, and morphological properties of PP/EPR blends has been investigated. Blends of various compositions (with and without compatibilizer) were prepared using a corotating twin-screw extruder. The results were compared to the ones presented by a commercial (PP/EPR) blend. The EPR phase is dispersed in the form of spherical particles in (PP/EPR). The EOC phase is dispersed in the form of aggregated particles. Dynamic viscoelastic and differential scanning calorimetry properties of (PP/EPR)/EOC blends shows the incompatibility of the components even in presence of PP-g-MAH copolymer. POLYM. ENG. SCI., 47:1009–1015, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
The objective of this work was to study the compatibilizer effect on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blends. The blends were coextruded and injection molded in various ratios of ABS with and without compatibilizers. Universal testing machine was employed to analyze the tensile properties of basic PP/ABS binary blends. From the mechanical testing, the impact and tensile properties of PP/ABS blend were optimized at 80/20 weight ratio. Various compatibilizers such as PP-g-MAH, SEBS-g-MAH and ethylene α-olefin copolymer were used and their comparative performance on binary blend was enumerated. Hybrid compatibilization effect was also studied and reported. However, the addition of compatibilizers showed the maximum increase in impact strength attributed to rubber toughening effect of ABS. The effect of compatibilizers on morphological properties was examined using scanning electron microscopy (SEM). SEM micrographs depicted the more efficient dispersion of ABS particles in PP matrix with the addition of compatibilizers. Further, interparticle distance analysis was carried out to evaluate the rubber toughening effect. The ABS droplet size in compatibilized PP/ABS blend was brought to minimum of 3.2 μm from 9.9 μm with the addition of compatibilizers. The melt rheology of PP/ABS blend systems was investigated through parallel plate arrangement in frequency sweep. Linear viscoelastic properties like storage (G′) and loss (G″) modulus and complex viscosity (η*) have been reported with reference to the virgin materials. It is understood that the combination of compatibilizers (hybrid compatibilizer) had a considerable effect on the overall blend properties.  相似文献   

8.
Among modified Poly(propylene)s (PPs) grafted with polar monomers, PP grafted with maleic anhydride (PP-g-MAH) is known to be the most efficient compatibilizer for PP/clay nanocomposites, since it provides well-dispersed nanostructures and yields optimal physical properties of the nanocomposites. One drawback of this material, however, is that it becomes brittle and its viscosity decreases drastically, leading to nanocomposites with low toughness as the graft degree of MAH increases. Therefore, there is a limitation to increasing both stiffness and toughness of PP/clay nanocomposites with PP-g-MAH. In this study, we investigated the performance of a PP grafted with maleic anhydride and styrene (PP-g-MAH-St) as compatibilizers in PP/clay nanocomposites. It was found that the incorporation of styrene as a comonomer prevents molecular weight reduction of the PP main chain upon high loading of a radical initiator for high graft degree of MAH. The compatibilizers (PP-g-MAH-St) thus obtained show good compatibilizing performance in PP/clay nanocomposites. The PP/clay nanocomposites compatibilized by PP-g-MAH-St show both high stiffness and toughness, which is accomplished by using a compatibilizer of higher viscosity compared with PP-g-MAH.  相似文献   

9.
Qi-Wei Lu 《Polymer》2004,45(6):1981-1991
Three functionalized polypropylenes (PP), a maleated PP (PP-g-MA), primary amine functionalized PP (PP-g-NH2), and secondary amine functionalized PP (PP-g-NHR), were melt blended with a thermoplastic polyurethane (TPU) at different compositions. Compatibility of each functionalized PP with TPU was compared by investigating the binary blends using rheological (mixer torques, dynamic shear rheometry), thermal (dynamic mechanical analysis), mechanical (tensile test), and morphological (scanning electron microscopy with image analysis, particle size analysis) measurements. Compatibility of the three functionalized PP's with TPU is ranked in a decreasing order as follows: PP-g-NHR≥PP-g-NH2?PP-g-MA, which is attributed to higher reactivity of amine (primary and secondary) with urethane linkages. Accordingly, the TPU blends with the two types of amine functionalized PP's exhibited much better synergy, as reflected by much improved mechanical properties including higher tensile strength and ultimate elongation, and finer and more stable morphologies.  相似文献   

10.
Blends of polyethylene terephthalate (PET) and polypropylene (PP) at compositions 20/80 and 80/20 were modified with three different styrene–ethylene/butyl–ene-styrene (SEBS) triblock copolymers with the aim of improving the compatibility and in particular the toughness of the blends. The compatibilizers involved an unfunctionalized SEBS and two functionalized grades containing either maleic anhydride (SEBS-g-MAH) or glycidyl methacrylate (SEBS-g-GMA) grafted to the midblock. The effects of the compatibilizers were evaluated by studies on morphology and mechanical, thermal and rheological properties of the blends. The additon of 5 wt % of a SEBS copolymer was found to stabilize the blend morphology and to improve the impact strength. The effect was, however, far more pronounced with the functionalized copolymers. Particularly high toughness combined with rather high stiffness was achieved with SEBS-g-GMA for the PET-rich composition. Addition of the functionalized SEBS copolymers resulted in a finer dispersion of the minor phase and clearly improved interfacial adhesion. Shifts in the glass transition temperature of the PET phase and increase in the melt viscosity of the compatibilized blends indicated enhanced interactions between the discrete PET and PP phases induced by the functionalized compatibilizer, in particular SEBS-g-GMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:241–249, 1997  相似文献   

11.
The aim of this work was the synthesis of new graft copolymers consisting of polypropylene (PP) backbones and liquid crystalline polymer (LCP) branches, to be used as compatibilizing agents for PP/LCP blends. The PP-g-LCP copolymers have been prepared by polycondensation of the monomers of a semiflexible liquid crystalline polyester (SBH 1 : 1 : 2), that is, sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the mole ratio of 1 : 1 : 2, carried out in the presence of appropriate amounts of a commercial acrylic-acid-functionalized polypropylene (PPAA). The polycondensation products, referred to as COPP50 and COPP70, having a calculated PPAA concentration of 50 and 70 wt %, respectively, have been fractionated with boiling toluene and xylene, and the soluble and insoluble fractions have been characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, and X-ray diffraction. All analytical characterizations have concordantly shown that the products are formed by intricate mixtures of unreacted PPAA and SBH together with PP-g-SBH copolymers of different composition. Exploratory experiments carried out by adding small amounts of COPP50 or COPP70 into binary mixtures of isotactic polypropylene (iPP) and SBH while blending have demonstrated that this practice leads to an appreciable improvement of the dispersion of the minor LCP phase, as well as to an increase of the crystallization rate of iPP. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 391–403, 1998  相似文献   

12.
Polymer blends of commercial polyphenylene oxide (mPPO) and polypropylene (PP) are immiscible and incompatible in blend system. Maleic anhydride-grafted-copolymer has been employed as in situ compatibilizer for the mPPO and PP blends. This copolymer contains reactive anhydride functional groups that were able to react with mPPO at [sbnd]CH3 side methyl groups [sbnd]OH terminal groups under the melt conditions. The PP-g-MA copolymer reduces the interfacial tension between the two polymers and act as a bridge between them to make compatible. The blends have been characterized using FTIR, SEM, and its mechanical behavior.  相似文献   

13.
The dynamic mechanical properties of both homopolypropylene (PPVC)/Maleated Poly-propylene (PP-g-MA) and ethylene-propylene block copolymer (PPSC)/Maleated Poly-propylene (PP-g-MA) blends have been studied by using a dynamic mechanical thermal analyzer (PL-DMTA MKII) over a wide temperature range, covering a frequency zone from 0.3 to 30 Hz. With increasing content of PP-g-MA, α relaxation of both blends gradually shift to a lower temperature and the apparent activation energy ΔEα increases. In PPVC/PP-g-MA blends, β relaxation shifts to a higher temperature as the content of PP-g-MA increases from 0 to 20 wt % and then change unobviously for further varying content of PP-g-MA from 20 to 35 wt %. On the contrary, in the PPSC/PP-g-MA blends β1 relaxation, the apparent activation energy ΔEβ1 and β2 relaxation are almost unchanged with blend composition, while ΔEβ2 increases with an increase of PP-g-MA content. In the composition range studied, storage modulus É value for PPSC/PP-g-MA blends decreases progressively between β2 and α relaxation with increasing temperature, but in the region the increment for PPVC/PP-g-MA blends is independent of temperature. The flexural properties of PPVC/PP-g-MA blend show more obvious improvement on PP than one of PPSC/PP-g-MA blends. Scanning electron micrographs of fracture surfaces of the blends clearly demonstrate two-phase morphology, viz. the discrete particles homogeneously disperse in the continous phase, the main difference in the morphology between both blends is that the interaction between the particles and the continuous phase is stronger for for PPVC/PP-g-MA than for PPSC/PP-g-MA blend. By the correlation of the morphology with dynamic and mechanical properties of the blends, the variation of the relaxation behavior and mechanical properties with the componenet structure, blend composition, vibration frequency, and as well as the features observed in these variation are reasonably interpreted. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Rheology, phase behavior and morphology of poly(ethylene terephthalate)/polypropylene (PET/PP) blends compatibilized with maleic-anhydrate-grafted-PP (PP-g-MA) and n-butyl-acrylate-glycidyl-methacrylate-ethylene (EBGMA) were studied. According to infrared spectroscopy results, whereas PP-g-MA was merely capable of reacting with hydroxyl groups of PET, epoxy groups of EBGMA could react with both the hydroxyl and carboxyl end groups of PET. The enhanced compatibilizing effect of EBGMA on PET/PP systems over PP-g-MA was also revealed by scanning electron microscopy and mechanical experiments. From frequency and temperature sweep rheological experiments, the dynamic characteristics of the compatibilized blends found to be improved in comparison with those of the uncompatibilized system. Such enhancement was interpreted as a result of the higher miscibility of the compatibilized blends which was further supported by Cole–Cole plot analyses.  相似文献   

15.
Noncompatibilized and compatibilized blends of nylon 1010/PP blends having five different viscosity ratios were prepared by melt extrusion. Glycidyl methacrylate-grafted-polypro-pylene (PP-g-GMA) was used as the compatibilizer to enbance the adhesion between the two polymers and to stabilize the blend morphology. The effect of the viscosity ratio on the morphology of nylon 1010/polypropylene blends was investigated, with primary attention to the phase-inversion behavior and the average particle size of the dispersed phase. The relationship between the mechanical properties and the phase-inversion composition was investigated as well. Investigation of the morphology of the blends by microscopy indicated that the smaller the viscosity ratio (ηpp/ηpa) the smaller was the polypropylene concentration at which the phase inversion took place and polypropylene became the continuous phase. The compatibilizer induced a sharp reduction of particle size, but did not have a major effect on the phase-inversion point. An improvement in the mechanical properties was found when nylon 1010 provided the matrix phase. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The spray-freeze drying (SFD) technique was applied to sonicated aqueous suspensions of spray-dried montmorillonite clay (MMT) to produce highly porous agglomerates (SFD-MMT). Both MMT (used as a reference) and SFD-MMT were subsequently incorporated in polypropylene (PP) via melt compounding to produce 2 wt % nanocomposites with and without maleic anhydride grafted polypropylene (PP-g-MA). Polypropylene nanocomposites containing SFD-MMT exhibited thinner silicate flake layers compared to large agglomerates in PP/MMT nanocomposites. SFD-MMT particles became even more finer in the presence of PP-g-MA (i.e., in PP/PP-g-MA /SFD-MMT) where it hindered PP crystallization instead of serving as nucleation sites for the PP crystallization during rapid cooling. SFD-MMT improved the thermal stability of PP/PP-g-MA by 30°C compared to only 5–8°C for MMT/nanocomposites. MMT acts as a heterogeneous nucleating agent in the nucleation-controlled PP nanocomposites, but the hindrance effect was observed for the PP/PP-g-MA with SFD-MMT. PP/PP-g-MA/SFD-MMT exhibited twice the edge surface energy as compared to PP/PP-g-MA/MMT. The incorporation of both types of MMT raised the tensile moduli of PP and PP/PP-g-MA, with no improvement in their tensile strength and a decrease in the elongation at break. The PP/PP-g-MA/SFD-MMT showed brittle failure. POLYM. ENG. SCI., 60:168–179, 2020. © 2019 Society of Plastics Engineers  相似文献   

17.
β-Nucleated polypropylene (PP), uncompatibilized β-nucleated PP/poly(trimethylene terephthalate) (PTT), β-nucleated PP/PTT blends compatibilized with maleic anhydride (MA)-grafted PP (PP-g-MA), and styrene–ethylene–propylene copolymer were prepared with a twin-screw extruder. The morphology, compatibility, crystallization characteristic, melting behavior, and crystallization kinetics were investigated. The result shows that β-nucleated PP was incompatible with PTT, and the addition of the two compatibilizers decreased the interfacial tension between β-nucleated PP and PTT; this led to improved dispersion and strengthened interfacial bonding in the blends. PP-g-MA had a better compatibilization effect. All of the researched β-nucleated PP/PTT blends contained β crystals of PP, and the compatibilizers exhibited synergistic effects with the β-nucleating agent to further increase the content of β crystals. Nonisothermal kinetic analysis indicated that Mo's method described the nonisothermal crystallization behavior of the β-nucleated PP/PTT blends satisfactorily, and the Avrami approach could only describe the early stage of the crystallization appropriately, whereas the Ozawa method failed to have the same effect. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Extensive research studies have been carried out to enhance the energy storage density of polypropylene (PP) films for power capacitor application to cater to the development of power system. However, most of the research studies failed to balance the energy storage density and dielectric loss which generates heat and threatens the operation of power capacitor. In the present study, we proposed a ternary system composited of PP, maleic anhydride-grafted PP (PP-g-MAH), and nano-ZrO2 with totally 25 compositions in an orthogonal ingredient system. Direct current (dc) breakdown test and dielectric spectra were measured and showed that the largest enhancement of 30.2% of energy storage density was achieved with both increased dielectric constant and dc breakdown strength (BDS), while the dielectric loss kept the same level of neat PP. This on the one hand was attributed to the orientation polarization, ionic polarization, and deep traps introduced by PP-g-MAH and nano-ZrO2, evidenced by the thermal stimulated depolarization current test results. On the other hand, the results of dynamic mechanical analysis indicated that the compatibility of each phases was largely improved in the ternary system so that a high dc BDS was obtained due to the restricted segmental molecular motion. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48211.  相似文献   

19.
Maleic anhydride compatibilized blends of isotactic polypropylene (PP) and thermotropic liquid crystaline polymer (LCP) were prepared either by the direct injection molding (one-step process), or by twin-screw extrusion blending, after which specimens were injection molded (two-step process). The morphology and mechanical properties of these injection molded in situ LCP composites were studied by means of scanning electron microscopy (SEM), Izod impact testing, static tensile, and dynamic mechanical measurements. SEM observations showed that fine and elongated LCP fibrils are formed in the maleic anhydride compatibilized in situ composites fabricated by means of the one-step process. The tensile strength and modulus of these composites were considerably close to those predicted from the rule of mixtures. Furthermore, the impact behavior of LCP fibril reinforced composites was similar to that of the glass fiber reinforced polymer composites. On the other hand, the maleic anhydride compatibilized blends prepared from the two-step process showed lower mechanical performance, which was attributed to the poorer processing behavior leading to the degradation of PP. The effects of the processing steps, temperatures, and compatibilizer addition on the mechanical properties of the PP/LCP blends are discussed.  相似文献   

20.
Polypropylene (PP) and polyethylene terephthalate (PET) are the two most widely used plastics, which are not compatible with recycling as a blend. In this research work, two different compositions of recycled PP/PET ribbon 65/35 (v/v %) and 78/22 (v/v%) along with 5% (wt%) of polypropylene-grafted maleic anhydride (PP-g-MAH) as compatibilizer were blended, 2– 5 wt% of carbon fiber (CF) was further added for reinforcement. The compositions of these materials are mechanically mixed and extruded by a twin-screw extruder to make pellets. These pellets are then used to produce standard samples by injection molding for evaluation. The molded samples were tested under tensile, flexural and impact loads to evaluate mechanical properties. Scanning electron microscopy (SEM) was conducted on the fracture surface of the impact-tested samples to understand polymer blend morphology. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) also carried out to check the thermal properties, mainly transition temperatures (Tg) and heat flow. These test results compared, which show substantial improvement in mechanical properties by adding CF and compatibilizer, without much change in transition temperatures. POLYM. ENG. SCI., 60:575–580, 2020. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号