首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the study, polycyanurate (PCN)/epoxy resin (ER) blends are prepared to enhance the physical properties of cyanate ester resins. The effects of curing schedule and blend composition on their thermal, mechanical, and dielectrical properties of cured PCN/epoxy blend films are examined. FTIR analysis of the cured blend films exhibits the expected cyanurate and oxazolidinone peaks in all blend compositions except the film thermally treated for 1 h in the presence of 1% phenol. TGA results show that the thermal stability decreases with epoxy content in the blend film. From SEM analyses, it is observed that all films have very dense, smooth, and bubble free surface without phase separation. For the pure PCN, the dielectric constants are found to be 3.54–5.91 in the range of 10?1–107 Hz between 20°C and 200°C. PCN/epoxy blends up to 50% epoxy resin show a good stability of dielectric constant in this frequency band for 200°C, which is close to the dielectric constant of the homopolymerized PCN. Beyond this percentage of epoxy resin, dielectric constants of PCN/epoxy blends greatly increase at low‐frequency region (0.1–103 Hz) due to the interfacial polarization governed by Maxwell–Wagner–Sillars effect. POLYM. ENG. SCI., 58:820–829, 2018. © 2017 Society of Plastics Engineers  相似文献   

2.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

3.
A novel hyperbranched poly(phenylene oxide) (HBPPO) modified 2,2′‐bis(4‐cyanatophenyl) isopropylidene (BCE) resin system with significantly reduced curing temperature and outstanding dielectric properties was developed, and the effect of the content of HBPPO on the curing behavior and dielectric properties as well as their origins was thoroughly investigated. Results show that BCE/HBPPO has significantly lower curing temperature than BCE owing to the different curing mechanisms between the two systems, the difference also brings different crosslinked networks and thus dielectric properties. The dielectric properties are frequency and temperature dependence, which are closely related with the content of HBPPO in the BCE/HBPPO system. BCE/2.5 HBPPO and BCE/5 HBPPO resins have lower dielectric constant than BCE resin over the whole frequency range tested, while BCE/10 HBPPO resin exhibits higher dielectric constant than BCE resin in the low frequency range (<104 Hz) at 200°C. At 150°C or higher temperature, the dielectric loss at the frequency lower than 102 Hz becomes sensitive to the content of HBPPO. These phenomena can be attributed to the molecular relaxation. Two relaxation processes (α‐ and β‐relaxation processes) are observed. The β‐relaxation process shifts toward higher frequency with the increase of temperature because of the polymer structure and chain flexibility; the α‐relaxation process appears at high temperature resulting from the chain‐mobility effects. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
《Ceramics International》2021,47(18):25826-25831
In this study, we demonstrated the seed layer mediated growth of high-quality BaTiO3 (BTO) thin films using a two-step radio frequency (RF) magnetron sputtering process. Since the as-grown BTO thin films obtained by RF magnetron sputtering at the deposition temperatures of 300–500 °C were amorphous with a low dielectric constant of 20, it is necessary to develop a fabrication process for obtaining crystalline high-k BTO thin films without sacrificing other film properties such as morphology and leakage current. First, it was revealed that ex-situ post-deposition annealing (PDA) at high temperatures in the 700–800 °C range led to the crystallization of BTO films and a high dielectric constant of 121. However, the film morphology deteriorated significantly during PDA, and consequently, a high leakage current was observed due to the rough and discontinuous surface containing voids and micro-cracks. To achieve an excellent leakage current characteristic as well as a high dielectric constant for a crystalline BTO thin film, in-situ crystallization was carried out through local epitaxial growth using a crystalline seed layer. The crystalline BTO seed layer was formed by annealing a 5-nm-thick amorphous BTO film at 700 °C on which the in-situ crystallized BTO main layer was deposited at 500 °C. The in-situ crystallization method resulted in a smooth and uniform surface and a high dielectric constant of 113. In addition, the in-situ crystallized BTO film exhibited a low leakage current density of 10−6 A/cm2 (at 0.8 V) displaying an improvement by a factor of 103 compared to the ex-situ crystallized BTO film.  相似文献   

5.
High curing temperature is the key drawback of present heat resistant thermosetting resins. A novel epoxy‐functionalized hyperbranched poly(phenylene oxide), coded as eHBPPO, was synthesized, and used to modify 2,2′‐bis (4‐cyanatophenyl) isopropylidene (CE). Compared with CE, CE/eHBPPO system has significantly decreased curing temperature owing to the different curing mechanism. Based on this results, cured CE/eHBPPO resins without postcuring process, and cured CE resin postcured at 230°C were prepared, their dynamic mechanical and dielectric properties were systematically investigated. Results show that cured CE/eHBPPO resins not only have excellent stability in dielectric properties over a wide frequency range (1–109Hz), but also show attractively lower dielectric constant and loss than CE resin. In addition, cured CE/eHBPPO resins also have high glass transition temperature and storage moduli in glassy state. These attractive integrated performance of CE/eHBPPO suggest a new method to develop high performance resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
TiNbO5 (TNO) thin films were deposited by electrophoresis at room temperature by using TNO nanosheets. These TNO films exhibited a large (001) interplanar distance (1.18 nm) owing to the presence of TBA+ between the TNO layers. The TBA+, which were used to synthesize the TNO nanosheets, were removed from the TNO film after annealing at 600 °C. Two types of structures were developed in the film annealed at 600 °C: type-1 and type-2, which revealed (001) interplanar distances of 0.52 and 0.71 nm, respectively. The TNO film annealed at 600 °C showed a dielectric constant of 48.5, low dielectric loss (0.02), and small leakage current density of 4.16 × 10−7 A/cm2 at 0.6 MV/cm. The dielectric properties were stable with respect to the film thickness and the applied electric field; the dielectric and insulation properties were maintained up to 300 °C. Therefore, TNO films are good candidates for high-temperature capacitors.  相似文献   

7.
In this paper the dielectric properties of crack‐free, Bi12SiO20 thin films were investigated. The films were prepared on Pt/TiO2/SiO2/Si and corundum substrates using the sol–gel method. The formation of a pure Bi12SiO20 phase was observed at a temperature of 700°C. The Bi12SiO20 thin films, heat treated at 700°C for 1 h, had a dense microstructure with an average roughness (Ra) of 50 nm. The dielectric properties of the film were characterized by using both low‐ and microwave‐frequency measurement techniques. The low‐frequency measurements were conducted with a parallel capacitor configuration. The dielectric constant and dielectric losses were 44 and 7.5 × 10?3, respectively. The thin‐film dielectric properties at the microwave frequency were measured using the split‐post, dielectric resonator method (15 GHz) and the planar capacitor configuration (1–5 GHz). The dielectric constant and the dielectric losses measured at 15 GHz were 40 and 17 × 10?3, respectively, while the dielectric constant and the dielectric losses measured with the planar capacitor configuration were 39 and 65 × 10?3, respectively.  相似文献   

8.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   

9.
《Ceramics International》2016,42(11):13262-13267
Barium zirconate titanate (BaZr0.2Ti0.8O3, BZT) 250 nm thick thin films were fabricated by pulsed laser deposition and the influence of the substrate temperature on their preferred orientation, microstructure, morphology and dielectric properties was investigated. Dielectric measurements indicated the (1 1 0)-oriented BZT thin films deposited at 750 °C to show good dielectric properties with high dielectric constant (~500 at 100 kHz), low loss tangent (<0.01 at 100 kHz), and superior tunability (>70% at 400 kV/cm), while the largest figure of merit was 78.8. The possible microstructural background responsible for the high dielectric constant and tenability is discussed. In addition, thin films deposited at 750 °C with device quality factor of 8738 and dielectric nonlinearity coefficient of 1.66×10−10 J/C4m5 were demonstrated.  相似文献   

10.
1,2‐Bis(vinylphenyl)ethane (BVPE) could be cured without curing agents at relatively low temperatures (~ 180°) in a nitrogen atmosphere. Cured BVPE (CBVPE) resin showed exceptionally low dielectric constant (? = 2.50 at 10 GHz) and low dielectric loss tangent (tan δ = 0.0012 at 10 GHz), and had excellent thermal resistance. Its 5 wt % weight‐loss temperature was 425°C in a nitrogen atmosphere and glass transition temperature was over 400°C. Poly(phenylene oxide) (PPO) was used to improve the toughness of CBVPE resin. PPO was an effective modifier to toughen CBVPE resin: when using 30 wt % of the modifier, the tensile strength and elongation of the modified CBVPE resin were 75 MPa and 26%, respectively. The modified CBVPE resin also showed excellent dielectric properties (? = 2.45 at 10 GHz, tan δ = 0.0015 at 10 GHz). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1252–1258, 2004  相似文献   

11.
With the development of ultralarge-scale integrated circuits, polymers with low dielectric constant and high thermal stability have aroused great interest. We prepared two novel bridged siloxane-based benzocyclobutene (BCB) star-shaped monomers, tetrakis[dimethyl siloxy-4-(1′,1′-dimethyl-1′-ethyl silicon)-benzocyclobutene] (TDSDES-BCB) and tetrakis(hexamethyl siloxane vinyl-benzocyclobutene) (THSV-BCB), and the corresponding resins were obtained by curing. The structures of TDSDES-BCB and THSV-BCB were confirmed by 1H-NMR, 13C-NMR, and 29Si-NMR spectra and time-of-flight mass spectrometry analysis. The curing behavior of these monomers was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dielectric constant of cured TDSDES-BCB is only 2.43 at 10 MHz (that of THSV-BCB is 2.46). In addition, these resins display high thermal stability: the 5 wt % weight loss temperature of cured TDSDES-BCB is about 467 °C (454 °C for THSV-BCB resin). The excellent low dielectric property is attributable to the free volume created by the star-shaped structure and crosslinked network structure of BCB after curing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47458.  相似文献   

12.
A new ultra‐low fire glass‐free microwave dielectric material Li3FeMo3O12 was investigated for the first time. Single phase ceramics were obtained by the conventional solid‐state route after sintering at 540°C–600°C. The atomic packing fraction, FWHM of the Ag oxygen‐octahedron stretching Raman mode and Qf values of samples sintered at different temperatures correlated well with each other. The sample with a Lower Raman shift showed a higher dielectric constant. Interestingly, the system also showed a distinct adjustable temperature coefficient of resonant frequency (from ?84× 10?6/°C to 25 × 10?6/°C).  相似文献   

13.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) was blended with poly(vinyl alcohol) (PVA) to form 0, 10, 20, 30, 40, and 50 vol % PEDOT–PSS/PVA solutions, and their freestanding films were prepared with a simple and cost‐effective solution casting technique at 27 °C in the absence of additives. Field emission scanning electron microscopy images revealed changes in the cocontinuous network to a rodlike morphology in the composite films from 10 to 50 vol % PEDOT–PSS/PVA. The alternating‐current conductivity was found to obey Jonscher's power law. The obtained values of the dielectric constant at 27 °C were relatively high, and a maximum value of 6.7 × 104 at 100 Hz for 40 vol % PEDOT–PSS'/PVA was observed. The dielectric loss attained a maximum value of about 106 at 100 Hz for 40 vol % PEDOT–PSS/PVA. However, a decrease in the dielectric parameters was observed at 50 vol % PEDOT–PSS/PVA because of locally induced strain in the microstructure. The variations in polarization with respect to the applied electric field (P–E) were determined for 50, 100, and 500 Hz at 500 V for the freestanding composite films of lower concentrations up to 20 vol % PEDOT–PSS/PVA. In summary, the dielectric and P–E measurements confirmed that the electrical characteristics changed in accordance to the contribution from both resistive and capacitive sites in the PEDOT–PSS/PVA composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45079.  相似文献   

14.
The Bi1.5MgNb1.5O7 (BMN) thin films were prepared on Au-coated Si substrates by rf magnetron sputtering. We systematically investigated the structure, dielectric properties and voltage tunable property of the films with different annealing temperatures. The relationships of leakage current and breakdown bias field with annealing temperature were firstly studied and a possible explanation was proposed. The deposited BMN thin films had a cubic pyrochlore phase when annealed at 550 °C or higher. With the increasing of annealing temperature, the dielectric constant and tunability also went up. BMN thin films annealed at 750 °C exhibited moderate dielectric constant of 106 and low dielectric loss of 0.003–0.007 between 10 kHz and 10 MHz. The maximum tunability of 50% was achieved at a bias field of 2 MV/cm. However, thin films annealed at 750 °C had lower breakdown bias field and higher leakage current density than films annealed below 750 °C. The excellent physical and electrical properties make BMN thin films promising for potential tunable capacitor applications.  相似文献   

15.
We report the microstructural evolution and electrothermal properties of aromatic poly(azomethine ether) (PAME)-derived carbon films, which were fabricated by a facile spin-coating and following carbonization at different temperatures of 300–1,000°C. For the purpose, poly[3-(4-nitrilophenoxy)phenylenenitrilomethine-1,3-phenylenemethine] (mPAME) with a high residue of ~56.4 wt% after carbonization at 1,000°C was synthesized for a polymeric precursor for carbon films. The X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction analyses revealed that the molecular structures of mPAME films changed into an intrinsically nitrogen-doped graphitic structure, dominantly at the carbonization temperatures of 800–100°C. The electrical conductivity increased considerably from ~10−7 S/cm for mPAME-derived films fabricated at 300–700°C to ~100 S/cm for the film carbonized at 800°C to ~101 S/cm for the films carbonized at 900–1,000°C. Accordingly, mPAME-derived carbon films, which were carbonized at 900–1,000°C, exhibited excellent electrothermal performance, such as rapid temperature responsiveness, high maximum temperatures, and high electric power efficiency to relatively low applied voltages of 5–13 V.  相似文献   

16.
Polyarylene ether nitrile (PEN) based on biphenol exhibits a high glass transition temperature of 216°C, a high tensile strength of 110 MPa, and low elongation at break of approximately 4%. A series of PEN random copolymers with improved elongation at break were synthesized using various bisphenol compounds and 2,6-dichlorobenzonitrile (DCBN). The resulting PEN random copolymers exhibited a high glass transition temperature and thermal stability up to 513°C in a nitrogen atmosphere. PEN copolymers were amorphous and could easily be cast into transparent films with a tensile strength of 97.93–117.88 MPa and tensile modulus of 2187.98–2558.44 MPa. Most importantly, elongation at break of these PEN copolymers was higher than 13%. PEN copolymer films had a dielectric constant of 3.77–3.89 at 1 kHz and extremely low dielectric loss (<0.02). At the same time, the breakdown strength of PEN was in the range of 137.92–198.19 kV/mm and energy storage density was in the range of 0.32–0.68 J/cm3. Excellent mechanical, thermal, and dielectric properties of PEN make it possible to use them as high-temperature resistant dielectrics to act on high-temperature resistant insulated cables.  相似文献   

17.
To reduce power consumption of transparent oxide‐semiconductor thin film transistors, a gate dielectric material with high dielectric constant and low leakage current density is favorable. According to previous study, the bulk TiNb2O7 with outstanding dielectric properties may have an interest in its thin‐film form. The optical, chemical states and surface morphology of sol‐gel derived TiNb2O7 (TNO) thin films are investigated the effect of postannealing temperature lower than 500°C, which is crucial to the glass transition temperature. All films possess a transmittance near 80% in the visible region. The existence of non‐lattice oxygen in the TNO film is proposed. The peak area ratio of non‐lattice oxygen plays an important role in the control of leakage current density of MIM capacitors. Also, the capacitance density and dissipation factor were affected by the indium tin oxide (ITO) sheet resistance at high frequencies. The sample after postannealing at 300°C and electrode‐annealing at 150°C possesses a high dielectric constant (>30 at 1 MHz) and a low leakage current density (<1 × 10?6 A/cm2 at 1 V), which makes it a very promising gate dielectric material for transparent oxide‐semiconductor thin film transistors.  相似文献   

18.
A novel fluorinated biphenyl‐type epoxy resin (FBE) was synthesized by epoxidation of a fluorinated biphenyl‐type phenolic resin, which was prepared by the condensation of 3‐trifluoromethylphenol and 4,4′‐bismethoxymethylbiphenyl catalyzed in the presence of strong Lewis acid. Resin blends mixed by FBE with phenolic resin as curing agent showed low melt viscosity (1.3–2.5 Pa s) at 120–122°C. Experimental results indicated that the cured fluorinated epoxy resins possess good thermal stability with 5% weight loss under 409–415°C, high glass‐transition temperature of 139–151°C (determined by dynamic mechanical analysis), and outstanding mechanical properties with flexural strength of 117–121 MPa as well as tensile strength of 71–72 MPa. The thermally cured fluorinated biphenyl‐type epoxy resin also showed good electrical insulation properties with volume resistivity of 0.5–0.8 × 1017 Ω cm and surface resistivity of 0.8–4.6 × 1016 Ω. The measured dielectric constants at 1 MHz were in the range of 3.8–4.1 and the measured dielectric dissipation factors (tan δ) were in the range of 3.6–3.8 × 10?3. It was found that the fluorinated epoxy resins have improved dielectric properties, lower moisture adsorption, as well as better flame‐retardant properties compared with the corresponding commercial biphenyl‐type epoxy resins. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this work, a new method, consists of synthesis of urethane acrylate (UA) followed by in situ polymerization of pyrrole using cerium (IV) as an oxidant and UV‐curing of the composites, for preparing polypyrrole–UA (PPy–UA) composite films was described. It appeared that dielectric constants of the composites increased with increasing the PPy content and decreased with increasing the frequency from 10?2 to 107, indicating an interfacial Maxwell–Wagner contribution to the permittivity. An incorporation of a small amount of PPy (15% Py) to UA matrix increased their dielectric constants more than 4 × 104 (41,259) at 10?2 Hz. So, the incorporation of PPy was very effective for enhancing the dielectric properties of UA matrix. Furthermore, the significant enhancement in dielectric properties (loss tangent and dielectric constant) contributes to the improvement in electromagnetic interference shielding efficiency. Composite films were characterized using Fourier transform infrared attenuated total reflectance (FTIR‐ATR) spectrophotometer and 1H‐NMR. It was seen that PPy is blended with the UA matrix at the molecular level through H‐bonding interactions. A linear relationship was also observed between the characteristic groups' absorbances of PPy (from FTIR‐ATR) and dielectric constant values (from dielectric spectrometer). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

20.
The present work evaluates the effects of plasma power and oxygen mixing ratios (OMRs) on structural, morphological, optical, and electrical properties of strontium titanate SrTiOx (STO) thin films. STO thin films were grown by magnetron sputtering, and later thermal annealing at 700°C for 1 h was applied to improve film properties. X-ray diffraction analysis indicated that as-deposited films have amorphous microstructure independent of deposition conditions. The films deposited at higher OMR values and later annealed also showed amorphous structure while the films deposited at lower OMR value and annealed have nanocrystallinity. In addition, all as-deposited films were highly transparent (~80%–85%) in the visible spectrum and exhibited well-defined main absorption edge, while the annealing improved transparency (90%) within the same spectrum. The calculated direct and indirect optical band gaps for films were in the range of 3.60-4.30 eV as a function of deposition conditions. The refractive index of the films increased with OMRs and the postdeposition annealing. The frequency dependent capacitance measurements at 100 kHz were performed to obtain film dielectric constant values. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 μC/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). The leakage current density was relatively low (3 × 10−8Acm−2 at +0.8 V) indicating that STO films are promising for future dynamic random access memory applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号