首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Ind)2ZrCl2 catalyst was synthesized and used for copolymerization of ethylene and propylene (EPR) and terpolymerization of ethylene propylene and 5‐ethyldiene‐2‐norbornene (ENB). Methylaluminoxane (MAO) was used as cocatalyst. The activity of the catalyst was higher in copolymerization of ethylene and propylene (EPR) rather than in terpolymerization of ethylene, propylene and diene monomers. The effects of [Al] : [Zr] molar ratio, polymerization temperature, pressure ratio of ethylene/propylene and the ENB concentration on the terpolymerization behavior were studied. The highest productivity of the catalyst was obtained at 60°C, [Al] : [Zr] molar ratios of 750 : 1 and 500 : 1 for copolymerization and terpolymerization, respectively. Increasing the molar ratio of [Al] : [Zr] up to 500 : 1 increased the ethylene and ENB contents of the terpolymers, while beyond this ratio the productivity of the catalyst dropped, leading to lower ethylene and ENB contents. Terpolymerization was carried out batchwise at temperatures from 40 to 70°C. Rate time profiles of the polymerization were a decay type for both copolymerization and terpolymerization. Glass transition temperatures (Tg) of the obtained terpolymers were between ?64 and ?52°C. Glass transition temperatures of both copolymers and terpolymers were decreased with increased ethylene content of the polymers. Dynamic mechanical and rheological properties of the obtained polymers were studied. A compounded EPDM showed good thermal stability with time. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A mathematical model for the homogeneous terpolymerization of ethylene–propylene–diene (EPDM) in a semibatch reactor using Et(Ind)2ZrCl2/MAO as a catalyst system was developed and reported herein. In this study, we developed a kinetic model in order to explain the catalyst and EPDM properties such as catalyst activity, weight‐average molecular weight, and terpolymer composition, which were experimentally and theoretically obtained. For this system, a lower E/P feed ratio leads to a lower molecular weight and a broader initial molecular weight distribution, while the increase in diene concentration leads to a decrease in the catalyst activity without broadening the MWD of the resulting polymers. The proposed model accounts for these experimental trends and for some data in the literature.  相似文献   

3.
Summary Quarterpolymerizations of ethene/propene/hexene/ethylidenenorbornene and ethene/propene/octene/ethylidenenorbornene were carried out using the catalytic system [Me2C(3-MeCp)(Flu)]ZrCl2 / MAO to determine whether it is possible to lower the glass transition temperature of an EPDM. The influence of the quartermonomer on the polymerization activity and on the product properties, such as the incorporation rates of the three other monomers, the molar mass and molar mass distribution of the polymer were looked at. It was found that the activity is decreased using 1-hexene on the one hand and 1-octene on the other hand as quartermonomer with the effect being more distinct using the former. Both 1-hexene and 1-octene are incorporated to the detriment of propene and ENB, the reduction of the ENB content being more distinct. The molar masses of the polymers are not affected by the substitution of these two monomers by the quartermonomer. The glass transition temperature, however, using 1-hexene or 1-octene, was reduced - in the case of the latter by more than 10 °C from −50 to −62 °C. Received: 10 May 2000/Revised version: 19 October 2000/Accepted: 27 November 2000  相似文献   

4.
A new method to prepare functionalized polyethylene involving borane intermediates and transition metal catalysts is described. Two processes, direct and post polymerizations, were employed to prepare borane-containing polyethylene (PE-B), which can be transformed to functionalized polyethylene (LLDPE-f) with various functional groups, such as ? BR2, ? OH, ? NH2, ? OSi(CH3)3. In the direct process, the PE-B copolymers were prepared in one step by copolymerization of ethylene with a borane monomer (ω-borane-α-olefin). The post polymerization process requires two steps: copolymerization of ethylene and 1,4-hexadiene, and subsequential hydroboration reaction of unsaturated PE. Three transition metal catalysts, including two homogeneous metallocene (Cp2ZrCl2 [bis(cyclopentadienyl) zirconium dichloride] and Et(Ind)2ZrCl2 [1,1′-ethylenedi-η5-indenyl-zirconium dichloride] with MAO (methylaluminoxane)) and one heterogeneous (TiCl3·AA/Et2AlCl) ones, were studied in the copolymerization reactions. The single site Et(Ind)2ZrCl2/MAO homogeneous catalyst, with a strained ligand geometry and opened active site, is by far the most effective system in the incorporation of high olefins into polyethylene structures.  相似文献   

5.
Homogeneous copolymerization of styrene and 1‐hexene was carried out in toluene at room temperature using bisindenyl ethane zirconium dichloride/methylaluminoxane (MAO). The supported catalyst was prepared with immobilization of Et(Ind)2ZrCl2/MAO on silica (calcinated at 500°C) with premixed method. Heterogeneous copolymerization of styrene/1‐hexene with different mole ratios was carried out in the presence of supported catalyst system. The copolymers obtained from homogeneous and heterogeneous catalyst system were characterized by 1H NMR and 13C NMR. Composition of the resulting copolymers was determined by 1H NMR data. Analysis of 13C NMR spectra of obtained copolymers by homogeneous and heterogeneous catalyst systems present isotactic olefin‐enriched copolymers. Molecular weight and thermal behavior of resulting copolymers was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4008–4014, 2007  相似文献   

6.
This work reports on a correlation between catalyst configuration and copolymer microstructure for ethylene/propylene (E/P) copolymerization using three conventional C2‐symmetric metallocene catalysts, namely, rac‐Et(Ind)2ZrCl2 (EBI), rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2ZrCl2 (SiPh), and rac‐CH2(3‐tBu‐Ind)2ZrCl2 (MBu), with MAO as a common cocatalyst. Copolymerization reactions were conducted in toluene at three different temperatures with varied E/P ratios. Some typically obtained copolymers were characterized in detail using 13C‐NMR spectroscopy, by which triad distribution data were elaborated in a statistical method to determine the reactivity ratios (rE and rP) of the comonomers, which were also obtained by Fineman‐Rose estimation. The production of alternating‐like copolymers from EBI is attributed to the rapid interconversion between two conformation states of the active site, one of which favors the incorporation of propylene but the other one does not. Both SiPh and MBu are structurally more rigid and of larger dihedral angles than EBI; however, SiPh which owns open active site conformation tend to produce random copolymers at all studied temperatures, and for MBu, sterically hindered catalyst, block‐like copolymers were obtained. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
A nanosized silica particle was used as the support to prepare an Et[Ind]2ZrCl2/MAO catalyst for propylene polymerization of polypropylene. The catalyst and the polymer produced were characterized with nitrogen adsorption, ICP, DSC, SEM, TEM, XRD, solution viscometer, 13C NMR and optical microscopy. The effects of polymerization temperature and [Al]/[Zr] ratio on catalyst activity and polymer melting point were investigated. Under identical reaction conditions, nanosized catalyst exhibited better polymerization activity than the microsized catalyst (e.g., the former had 64% higher activity than the latter at the optimum polymerization temperature (50°C) and [Al]/[Zr] = 570). DSC results indicated that polymer melting point increased with the increase of [Al]/[Zr] ratio and with the decrease of polymerization temperature. XRD results showed that the percentage of γ crystals increased with decreasing [Al]/[Zr] ratio. Electron microscopic results showed that the polymer particle size increased with increasing polymerization temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2573–2580, 2006  相似文献   

8.
The homo-oligomerisation of 1-pentene in the presence of various bridged and non-bridged metallocenes and methylaluminoxane (MAO) at room temperature and at 60°C, respectively, has been studied. The use of the bridged catalysts rac-[C2H4(Ind)2]ZrCl2 ( 1 ) and [(CH3)2Si(Ind)2]ZrCl2 ( 2 ) leads to the formation of isotactic poly(1-pentene). The use of Cp2ZrCl2 ( 3 ), Cp2HfCl2 ( 4 ) and [(CH3)5C5]2ZrCl2 ( 5 ) leads to the formation of atactic poly(1-pentene). The stereoregularity of the isotactic poly(1-pentene) obtained with 1 was higher than that of the poly(1-pentene) synthesised with 2 . The degree of polymerisation was highly dependent on the metallocene catalyst. Oligomers ranging from the dimer of 1-pentene to poly(1-pentene) with a number-average molar mass Mn = 5100 g mol–1 were formed. The 1H NMR spectra of the samples were analysed with regard to functional groups and these were attributed to different chain termination processes. A MALDI-TOF spectrum of low-molar-mass poly(1-pentene) could be recorded using dithranol as matrix and adding silver trifluoroacetate to promote ion formation.  相似文献   

9.
Ethylene/propylene (E/P) and ethylene/1-octene (E/O) copolymers were polymerized with two bridged metallocene catalyst systems, Et(Ind)2ZrCl2/MAO and Et(Ind)2HfCl2/MAO, respectively. The copolymers produced and some commercial reference copolymers were characterized by DSC, SEC, DMA and 13C NMR. The Hf-catalysed E/P polymerizations showed much lower activities than the corresponding Zr-catalysed polymerizations but gave polymers with high molar mass. The Hf-based copolymers also showed two melting peaks which may be indicative of several active sites of the catalyst. A comparison of E/P copolymers, containing about 20 mol-% propylene and produced with Zr, Hf and homogeneous V-catalysts, respectively, indicated that the Hf and V-catalysts gave material more similar to each other. The E/O copolymers produced with Zr-catalysts gave very low molar masses and the reactivity ratios, calculated from the NMR data, indicated that the Hf-catalyst has a slightly higher reactivity for 1-octene and the Zr-catalyst some better reactivity for ethylene. Segregation fractionation studies by DSC indicated that a lower 1-octene feed gives more heterogeneous copolymers and the DMA measurements reveal the existence of a linear correlation between the 1-octene content and the intensity of the tan δmax peak.  相似文献   

10.
Tandem catalysis offers a novel synthetic route to the production of linear low‐density polyethylene. This article reports the use of homogeneous tandem catalytic systems for the synthesis of ethylene/1‐octene copolymers from ethylene stock as the sole monomer. The reported catalytic systems involving a highly selective, bis(diphenylphosphino)cyclohexylamine/Cr(acac)3/methylaluminoxane (MAO) catalytic systems for the synthesis of 1‐hexene and 1‐octene, and a copolymerization metallocene catalyst, rac‐Et(Ind)2ZrCl2/MAO for the synthesis of ethylene/1‐octene copolymer. Analysis by means of DSC, GPC, and 13C‐NMR suggests that copolymers of 1‐hexene and ethylene and copolymers of 1‐octene and ethylene are produced with significant selectivity towards 1‐hexene and 1‐octene as comonomers incorporated into the polymer backbone respectively. We have demonstrated that, by the simple manipulation of the catalyst molar ratio and polymerization conditions, a series of branched polyethylenes with melting temperatures of 101.1–134.1°C and density of 0.922–0.950 g cm?3 can be efficiently produced. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Ethylene was copolymerized with 10‐undecen‐1‐ol and 5‐hexen‐1‐ol using stereorigid [rac‐ethylene(Ind)2ZrCl2], [rac‐ethylene(H4Ind)2ZrCl2], and the new catalyst systems [rac‐norbornane(Ind)2TiCl2] and [mesonorbornane(Ind)2TiCl2], activated with methylaluminoxane. The characterization of the copolymers by 13C NMR spectroscopy revealed that the polymerization products were copolymers and that the conversion of the polar comonomer was strongly favored in the case of the zirconocene precursors. Very high catalytic activity values, nearly independent on the amount of comonomer in the feed, and comonomer incorporations up to 25.4%‐weight have been found for 10‐undencen‐1‐ol comonomer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
It is demonstrated that the catalyst system bis(pentamethylcyclopentadienyl)‐zirconium dichloride (Me5Cp)2ZrCl2–methylaluminoxane (MAO) is able to produce random copolymers of ethene and 1‐hexene. The 1‐hexene incorporation in the copolymers is extremely small. Even in the case of a molar ratio of [ethene] to [1‐hexene] of 1/20 in the monomer feed, only 1.4 mol % 1‐hexene are incorporated according to 13C nuclear magnetic resonance (NMR) spectra. Nevertheless, the physical properties of the random copolymers change significantly in this small range of 1‐hexene incorporation, from a high‐density polyethene to a linear low‐density polyethene. Thus, the melting temperature, the degree of crystallinity, the density and lamella thickness, and the long period of the alternating crystalline and amorphous regions decrease with increasing 1‐hexene content in the random copolymers. Blends of high‐density polyethene prepared with the system (Me5Cp)2ZrCl2–MAO and an elastomeric random copolymer of ethene and 1‐hexene are phase‐separated and show good compatibility, as demonstrated by transmission electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 439–447, 1999  相似文献   

13.
Copolymerization of propene with two α-olefins (1-hexene and 1-octadecene) using iso- and syndioselective metallocene catalysts (EtInd2ZrCl2, Et(2-MeInd)2ZrCl2, Me2SiInd2ZrCl2, Ph2CFluCpZrCl2 and Me2CFluCpZrCl2) activated with methylaluminoxane (MAO) is reported. The so-called comonomer effect was seen in the catalytic activity of the Me2SiInd2ZrCl2/MAO system. Incorporation of syndiotactic copolymers was greater than that of isotactic copolymers. The molecular weight of the isotactic copolymers was not affected significantly by the presence of the comonomer, but the molecular weights of the copolymers obtained with the syndioselective catalysts decreased with increasing comonomer concentration in the medium. Tensile properties were studied. Syndiotactic copolymers with incorporation of the order of 6 mol% of 1-octadecene presented elastomeric properties.  相似文献   

14.
A mechanistic analysis of propylene polymerization was performed, in which the catalyst system was Me2Si(R1Ind)2ZrCl2/SMAO/AlR32 (in situ supported catalyst onto MAO-modified silica) or Me2Si(R1Ind)2ZrCl2/MAO (homogeneous), where R1 = H or CH3, cocatalyzed by AlR32 = TEA (triethylaluminum), IPRA (isoprenylaluminum), or TIBA (triisobutylaluminum). The catalyst activity of the homogeneous system Me2Si(2-Me-Ind)2ZrCl2/MAO was almost 8 times higher than that observed for Me2Si(Ind)2ZrCl2/MAO (38 vs 4.6 kg PP/g cat h), while the polypropylene molar mass was 3 times higher (Mw: 93 vs 34 kg/mol). Conversely, the in situ supported systems Me2Si(Ind)2ZrCl2/SMAO/AlR3 and Me2Si(2-Me-Ind)2ZrCl2/SMAO/AlR3 showed similar activities, ranging from 0.2 to 1.5 kg PP/g cat h. The molar mass of the resulting polymers prepared using the in situ procedure was dependent on the AlR3 nature and on the Al/Zr ratio. Generally, the heterogeneous catalysts produced PP with higher molecular weights than that obtained with homogeneous ones. The influence of the alkylaluminum, used as the cocatalyst, on the chain-transfer termination reaction to the alkyl compound was evident from the activity and the molecular weight of the produced polymers.  相似文献   

15.
Oxazoline‐functionalized polypropylenes were synthesized by using the rac‐Et[1‐Ind]2ZrCl2/MAO catalyst system. The used comonomers were 2‐(9‐decene‐1‐yl)‐1,3‐oxazoline (R‐Ox1), 2‐(9‐decene‐1‐yl)‐4,4‐dimethyl‐1,3‐oxazoline (R‐Ox2), and 2‐(4‐(10‐undecene‐1‐oxy)phenyl)‐1,3‐oxazoline (R‐Ox3). The oxazolines reduce the catalyst activity in the order R‐Ox3 > R‐Ox1 > R‐Ox2. By the addition of triisobutylaluminum (TIBA), the catalyst poisoning is reduced and is most pronounced in the R‐Ox1‐ and R‐Ox2‐containing systems. The oxazoline‐containing copolymers were melt blended with carboxylic acid end‐functionalized polystyrene (PS‐COOH) at 200°C. Strong changes in the morphology of the reactive blends compared to the nonreactive blends, especially the cocontinuous morphology in a poly(propylene‐co‐R‐Ox3)/PS‐COOH blend, indicate the usefulness of the modified copolymers in the reactive blending processes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2174–2181, 2002  相似文献   

16.
A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for metallocene/Ziegler-Natta hybrid catalyst. The SMB was treated with methylaluminoxane (MAO) prior to the immobilization of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was applied to the ethylenehexene copolymerization with a variation of cocatalyst species (polymerization run 1: triisobutylaluminum (TIBAL) and methylaluminoxane (MAO), polymerization run 2: triethylaluminum (TEA) and methylaluminoxane (MAO)). The effect of cocatalysts on the chemical composition distributions (CCDs) and microstructures of ethylene-hexene copolymers was examined. It was found that the catalytic activity in polymerization run 1 was a little higher than that in polymerization run 2, because of the enhanced catalytic activity at the initial stage in polymerization run 1. The chemical composition distributions (CCDs) in the two copolymers showed six peaks and exhibited a similar trend. However, the lamellas in the ethylene-hexene copolymer produced in polymerization run 1 were distributed over smaller sizes than those in the copolymer produced in polymerization run 2. It was also revealed that the rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced the ethylene-hexene copolymer with non-blocky sequence when TEA and MAO were used as cocatalysts.  相似文献   

17.
In situ intercalative polymerization for ethylene monomers was carried out to produce PE‐based hybrids through a slurry polymerization method. In this approach, organic solvent for olefin polymerization was found to be one of the most significant factors for the dispersion of the OMMT‐intercalated Et[Ind]2ZrCl2 catalysts, which determines that whether olefin monomers polymerize is in a well‐defined confinement environment or not. Understanding the olefin polymerization occurring in between the nanoscale silicate layers of OMMT as well as the corresponding structure of OMMT in an organic polymerization solvent is a critical step toward tailoring and characterizing nanocomposites formed by OMMT in a polyolefin matrix. As we know, the Et[Ind]2ZrCl2 catalyst and MAO are both better dissolved in toluene than that in hexane because of the larger polarity of toluene. Thus, in hexane the active sites of the OMMT/Et[Ind]2ZrCl2 catalyst exist in the silicate layers of OMMT and the PE chains grow in the middle of them, while in toluene the active specimens are exposed in the gel formed by the OMMT‐intercalated catalyst with MAO, which cause that the PE chains propagated in the mixture liquids. Consequently, when hexane is selected as the polymerization solvent, the formed PE‐based nanocomposites have a good dispersion of OMMT and the nanofiller content (TGA measurement residue at 600°C) is thus higher (>7.0 wt %). However, in toluene, most of the silicate layers of OMMT are agglomerated in the PE matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Copolymerizations of ethylene with endo‐dicyclopentadiene (DCP) were performed by using Cp2ZrCl2 (Cp = Cyclopentadienyl), Et(Ind)2ZrCl2 (Ind = Indenyl), and Ph2C(Cp)(Flu)ZrCl2 (Flu = Fluorenyl) combined with MAO as cocatalyst. Among these three metallocenes, Et(Ind)2ZrCl2 showed the highest catalyst performance for the copolymerization. From 1H‐NMR analysis, it was found that DCP was copolymerized through enchainment of norbornene rings. The copolymer was then epoxidated by reacting with m‐chloroperbenzoic acid. 13C‐NMR spectrum of the resulting copolymer indicated the quantitative conversion of olefinic to epoxy groups. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 103–108, 1999  相似文献   

19.
Linear low‐density polyethylene (LLDPE) is produced in a reactor from single ethylene feed by combining Ti(OBu)4/AlEt3, capable of forming α‐olefins (predominantly 1‐butene), with SiO2‐supported Et(Ind)2ZrCl2 (denoted MAO/SiO2/Et(Ind)2ZrCl2), which is able to copolymerize ethylene and 1‐butene in situ with little interference in the dual‐functional catalytic system. The two catalysts in the dual‐functional catalytic system match well because of the employment of triethylaluminum (AlEt3) as the single cocatalyst to both Ti(OBu)4 and MAO/SiO2/Et(Ind)2ZrCl2, exhibiting high polymerization activity and improved properties of the obtained polyethylene. There is a noticeable increment in catalytic activity when the amount of Ti(OBu)4 in the reactor increases and 1‐butene can be incorporated by about 6.51 mol % in the backbone of polyethylene chains at the highest Ti(OBu)4 concentration in the feed. The molecular weights (Mw), melting points, and crystallinity of the LLDPE descend as the amount of Ti(OBu)4 decreases, which is attributed mainly to chain termination and high branching degree, while the molecular weight distribution remains within a narrow range as in the case of metallocene catalysts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2451–2455, 2004  相似文献   

20.
Small amounts of 1,7‐octadiene (OD) comonomer, ranging from 0.5–5.0 mol‐%, were added during propene polymerization, catalyzed with methylalumoxane (MAO) activated rac‐Me2Si(2‐Me‐4‐phenyl‐Ind)2ZrCl2 (MPI), in order to incorporate long chain branches and small amounts of high molecular mass polypropene (PP), thus improving melt processability of isotactic metallocene‐polypropene. As a function of the OD content the PP melting temperatures varied from 120 to 160°C. The presence of long chain branches was reflected by increased zero shear viscosities combined with pronounced shear thinning behavior in the case of propene/OD copolymers with molecular mass distribution of w/n < 4. Rheological measurements clearly revealed crosslinking occurring at high OD content. OD addition impaired catalyst activities. However, in the presence of trace amounts of ethene, catalyst activities increased significantly even in the presence of high OD content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号