首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ceramic/polymer composites are attracting increasing interest in materials research and practical applications due to the combination of excellent electric properties of piezoelectric ceramics and good flexibility of polymer matrices. In this case, the crystallization of the polymer has a significant effect on the electric properties of ceramic/polymer composites. Based on different heat treatment methods, the crystallization of poly(vinylidene fluoride) (PVDF) in composites of lead zirconate titanate (PZT) and PVDF can be controlled effectively. PZT/PVDF composites with various PVDF crystallizations exhibit distinctive dielectric and piezoelectric properties. When the crystallization of PVDF is 21%, the PZT/PVDF composites show a high dielectric constant (ε) of 165 and a low dielectric loss (tan δ) of 0.03 at 103 Hz, and when the crystallization of PVDF reaches 34%, the piezoelectric coefficient (d33) of PZT/PVDF composites can be up to ca 100 pC N?1. By controlling the crystallization of PVDF, PZT/PVDF composites with excellent dielectric and piezoelectric properties were obtained, which can be employed as promising candidates in high‐efficiency capacitors and as novel piezoelectric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The relationship between the pressure, volume, and temperature (PVT) of poly(vinylidene fluoride) homopolymers (PVDF) and poly(vinylidene fluoride)–hexafluoropropylene (PVDF–HFP) copolymers was determined in the pressure range of 200–1200 bar and in the temperature range of 40°C–230°C. The specific volume was measured for two homopolymers having a molecular weight (Mw) of 160,000–400,000 Da and three copolymers containing between 3 and 11 wt % HFP with a molecular weight range of 320,000–480,000 Da. Differential scanning calorimetry (DSC) was used to simulate the cooling process of the PVT experiments and to determine the crystallization temperature at atmospheric pressure. The obtained results were compared to the transitions observed during the PVT measurements, which were found to be pressure dependent. The results showed that the specific volume of PVDF varies between 0.57 and 0.69 cm3/g at atmospheric pressure, while at high pressure (1200 bar) it varies between 0.55 and 0.64 cm3/g. For the copolymers, the addition of HFP lowered its melting point, while the specific volume did not show a significant change. The TAIT state equation describing the dependence of specific volume on the zero‐pressure volume (V0,T), pressure, and temperature has been used to predict the specific volume of PVDF and PVDF–HFP copolymers. The experimental data was fitted with the state equation by varying the parameters in the equation. The use of the universal constant, C (0.0894), and as a variable did not affect the predictions significantly. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 230–241, 2001  相似文献   

3.
We report here for the first time the role of noncovalently functionalized 2D nanomaterials on the ferroelectric and piezoelectric behavior of poly(vinylidene fluoride) (PVDF) nanocomposites. Graphene oxide (GO), expanded graphite (EG) and hexagonal boron nitride (h-BN) were noncovalently modified via Li-salt of 6-amino hexanoic acid (Li-AHA), denoted as m-GO, m-EG and m-BN, in order to de-agglomerate and de-stack them, which were subsequently incorporated into the PVDF matrix via solution mixing, followed by compression molding. Simultaneously, PVDF nanocomposites with unmodified 0.08 wt% of 2D nanomaterials were also prepared using the same methodology. PVDF/m-BN nanocomposite showed a higher extent of polar phase (~36%) associated with PVDF phase as compared to PVDF/m-GO and PVDF/m-EG nanocomposites. Further, the highest permittivity (~58 at 10−1 Hz) was achieved in PVDF/m-BN nanocomposite, which was also reflected in higher remnant polarization (~61 nC/cm2) and a significantly higher d33 value (~53 pm/V). Moreover, a higher output peak to peak voltage (~13 V) was obtained for the sensor device fabricated from PVDF/m-BN nanocomposite. Thus, the role of Li-AHA-modified 2D nanomaterials in improving the morphology, dielectric, ferroelectric, and piezoelectric characteristics of the PVDF nanocomposites was clearly established.  相似文献   

4.
Attempts were made to spin hollow-fiber membranes from poly(vinylidene fluoride) (PVDF) material by the dry–wet phase inversion method. Hollow fibers so prepared were characterized for various parameters and by electron microscopic techniques. Membranes were also tested for the separation of water/1-propanol mixtures in vapor phase. It was found that the hollow fibers were water selective despite the fact that PVDF material is hydrophobic. Intrinsically organic selective property of PVDF material was proved by coating a porous polyetherimide membrane with a PVDF layer, which resulted in enhancement of 1-propanol permeation while suppressing the permeation of water. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1263–1270, 1997  相似文献   

5.
The polymer poly(vinylidene fluoride) (PVDF) was irradiated with X-rays produced by a nonmonochromatic (MgKα) source and the structural and electronic PVDF surface modifications were studied by X-ray photoelectron spectroscopy (XPS). Changes in the shape and intensity of the C1s and F1s lines show that a PVDF degradation consisting of the polymer defluorination takes place. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2125–2129, 1998  相似文献   

6.
Frank Abraham 《Polymer》2010,51(4):913-69
This paper presents 1,3,5-benzenetrisamides as colorless α-nucleating agents for poly(vinylidene fluoride). In order to screen a large variety of 1,3,5-benzenetrisamide derivatives with respect to their nucleating potential an efficient and reliable test based on polarized light microscopy was established. For selected promising compounds the concentration dependence of the PVDF crystallization temperature, the dissolution behavior of the additive in the polymer melt, and the crystallization of the additive from the polymer melt was investigated in a concentration range between 1 wt% (10,000 ppm) and 70 ppm. It was found, that only two of the investigated compounds were able to raise the crystallization temperature about 8 °C at a concentration of 140 ppm and 580 ppm, respectively. These trisamides have the advantage being soluble in the polymer melt, not featuring absorption of visible light and therefore allowing the preparation of uniform and colorless PVDF products.  相似文献   

7.
The preparation of very hydrophobic poly(vinylidene fluoride) (PVDF) membranes was explored by using two methods. The first one was the modified phase inversion method using a water/N,N‐dimethylacetamide (DMAc) mixture instead of pure water as a soft precipitation bath. The second method was a precipitation‐bath free method, that is, the PVDF/DMAc casting solution underwent gelation in the open air instead of being immersed into a precipitation bath. The morphology of the surface and cross section of the membranes was investigated by using scanning electron microscopy (SEM). It was found that the membranes exhibited certain micro‐ and nanoscale hierarchical roughness on the surface, which brought about an enhanced hydrophobicity of the membrane. The contact angle (CA) of the samples obtained by the second method was as high as 150° with water. The conventional phase inversion method preparing PVDF porous membrane using pure water as precipitation bath usually results in an asymmetric membrane with a dense skin layer having a CA close to that of a smooth PVDF surface. The modified approach avoided the formation of a skin‐layer and resulted in a porous and highly hydrophobic surface of PVDF. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1358–1363, 2005  相似文献   

8.
Lei Yu 《Polymer》2009,50(9):2133-756
We investigated for the first time the morphology and crystal polymorphism of electrospun composite nanofibers of poly(vinylidene fluoride) (PVDF) with two nanoclays: Lucentite™ STN and SWN. Both nanoclays are based on the hectorite structure, but STN has organic modifier in between the layers of hectorite while SWN does not. PVDF/nanoclay was dissolved in N,N-dimethylformamide/acetone and electrospun into composite nanofiber mats with fiber diameters ranging from 50-800 nm. Scanning electron microscopy shows that addition of STN and SWN can greatly decrease the number of beads and make the diameter of the nanofibers more uniform due to the increase of electrospinning solution conductivity brought by the nanoclay. Infrared spectroscopy and X-ray diffraction confirm that both STN and SWN can induce more extended PVDF chain conformers, found in beta and gamma phase, while reducing the alpha phase conformers in electrospun PVDF/Nanoclay composite nanofibers. With the attached organic modifier, even a small amount of STN can totally eliminate the non-polar alpha crystal conformers while SWN cannot. The ionic organic modifier makes STN much more effective than SWN in causing crystallization of the polar beta and gamma phases of PVDF. An ion-dipole interaction mechanism, suggested by Ramasundaram, et al. is utilized to explain the crystal polymorphism behavior in electrospun PVDF/nanoclay composite nanofibers.  相似文献   

9.
The deformation and fracture mechanism during uniaxial tension under controlled strain rates are investigated for extruded poly(vinylidene fluoride) (PVDF) polymer films at room temperature. It was found that both the longitudinal and transversal film‐samples exhibited pronounced strain rate effect, that is, the yield stress increases while the fracture strain decreases with the increasing of strain rates. For the longitudinal film samples, phase transformation from the nonpolar α‐phase to the polar β‐phase occurs during the uniaxial tension, and the extent of the phase transformation enhances when the strain rate decreases. For the transversal film samples, no phase transformation was detected in all tested strain rates. By combining the stress–strain behavior and the X‐ray results, it can be inferred that the conformational change from α to β phase during uniaxial tension contributes to the higher fracture strain of the longitudinal films than that of the transversal films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1786–1790, 2007  相似文献   

10.
通过熔融共混法制备聚偏氟乙烯/聚碳酸酯(PVDF/PC)共混物,采用X线衍射仪(XRD)和差示扫描量热仪(DSC)表征共混物的结构、熔融和结晶行为.考察不同聚碳酸酯含量对聚偏氟乙烯晶体结构、熔点以及晶体完善程度等的影响.同时通过Avram i方程和结晶速率系数的研究,探讨PC对PVDF非等温结晶动力学的影响.研究结果表明:PC的掺杂没有改变PVDF的晶体结构,但是高PC质量分数(70%以上)却不利于PVDF晶体的生成;随着PC质量分数的增加,生成的PVDF晶体完善程度逐渐降低;当PC质量分数在70%以下时,PC起到类似成核剂作用,提高PVDF结晶速率.  相似文献   

11.
T. Umasankar Patro  Ashok Misra 《Polymer》2008,49(16):3486-3499
Montmorillonite clay based poly(vinylidene fluoride) nanocomposites were prepared by melt-mixing. The clays used included unmodified clay, a commercially available ammonium based clay, and two organically modified clays prepared by cation exchange with hexadecylpyridinium chloride and with octadecyltriphenylphosphonium bromide. PVDF-clay nanocomposites were processed in a mini twin-screw extruder. The structure of nanocomposites, analyzed using WAXD and TEM, indicated different extents of the clay dispersion depending on the modifier. PVDF formed β-phase crystals in the presence of organically modified clay when crystallized from its melt; in contrast, α-crystals were formed in the absence of clay and with unmodified clay. SAXS analysis indicated that the long period and crystalline lamella thickness decreased with the addition of clay. The melting and crystallization temperatures increased around 10 and 13 °C, respectively, with 5 wt% of phosphonium modified clay, which was the highest among the clays used. Further, the clay served as a nucleating agent for PVDF matrix, as observed by hot-stage polarized optical microscopy. The average spherulitic radius, determined from small angle light scattering, decreased with clay content. The elongation at break increased around 200% with the addition of only 5 wt% of ammonium clay. The storage and loss moduli of the nanocomposites were significantly higher than those of PVDF throughout the temperature range. Dielectric measurements showed a maximum increase of about 8 units of dielectric constant at 1 Hz frequency with 5 wt% organoclay.  相似文献   

12.
The preparation and characterization of nanocomposites of poly(vinylidene fluoride), PVDF, with acid treated multiwalled carbon nanotubes (MWCNT) with a wide composition range, from 0.1 to 5.0% MWCNT by weight, is reported. Effect of uniaxial orientation by zone drawing on these nanocomposites is discussed and compared with unoriented compression molded films. Static room temperature two‐dimensional wide angle X‐ray scattering and Fourier transform infrared spectroscopy were used for phase identification. Differential scanning calorimetry, polarizing optical microscopy, dynamic mechanical analysis (DMA), and thermogravimetic analysis (TGA) were used to study the thermal and mechanical properties. Incorporation of MWCNT into PVDF has no obvious effect in forming beta phase crystal in the PVDF/MWCNT bulk films, while zone drawing cause a significant alpha to beta transition in PVDF/MWCNT. Results indicate that MWCNTs act as nucleation agent during crystallization and slightly increase the degree of crystallinity of PVDF/MWCNT bulk films. TGA indicates the thermal stability is improved when MWCNT concentration increases for unoriented PVDF/MWCNT film. The modulus also increases significantly when MWCNT concentration increases. The glass transition temperature measured by the peak position of tanδ from DMA does not change with MWCNT concentration, but a slightly higher glass transition can be obtained by zone drawing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
In this study, the poly(vinylidene fluoride) (PVDF)—multiwalled carbon nanotubes (MWNTs) composites have been prepared by solution casting in two different solvents: dimethyl sulfoxide (DMSO) and dimethylacetamide (DMAc). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) results showed that the crystal phases of PVDF are quite different in the two solvents. When DMSO is used as the solvent, the PVDF crystalline phases could be greatly alternated from α‐form to β‐form by the incorporation of MWNTs. While the crystalline structure of PVDF hardly change in the case of DMAc. The DSC and polarized optical microphotographs implied that MWNTs not only act as nucleating agents for PVDF but also confine the crystallization of PVDF. Besides, it was found that the storage modulus (E′) of the composites were significantly enhanced with an appropriate content of MWNTs. And when using DMSO as the solvent, one relaxation process emerges in the loss tan δ (loss factor) curves of the neat PVDF and PVDF/MWNTs composites, while it was not observed in the DMAc system. The obtained results revealed that varing solvents have different effects on the crystallization behavior of PVDF with the addition of MWNTs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
This study presents an investigation of the effect of the different crystalline phases of each blend component on miscibility when blending poly(vinylidene fluoride) (PVDF) and its copolymer poly[(vinylidene fluoride)‐ran‐trifluorethylene] [P(VDF–TrFE)] containing 72 mol % of VDF. It was found that, when both components crystallized in their ferroelectric phase, the PVDF showed a strong effect on the crystallinity and phase‐transition temperature of the copolymer, indicating partial miscibility in the crystalline state. On the other hand, immiscibility was observed when both components, after melting, were crystallized in their paraelectric phase. In this case, however, a decrease in crystallization temperatures suggested a strong interaction between monomers in the liquid state. Blend morphologies indicated that, in spite of the lack of miscibility in the crystalline state, there is at least miscibility between PVDF and P(VDF–TrFE) in the liquid state, and that a very intimate mixture of the two phases on the lamellar level can be maintained upon crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1362–1369, 2002  相似文献   

15.
Zhi-Yin Wang  Ke-He Su  Zhen-Yi Wen 《Polymer》2006,47(23):7988-7996
The internal rotation, geometry, energy, vibrational spectra, dipole moments and molecular polarizabilities of poly(vinylidene fluoride) (PVDF) of α- and β-chain models were studied by density functional theory at B3PW91/6-31G(d) level. The effects of chain lengths and monomer inversion defects on the electric properties and vibrational spectra were examined. The results show that the tgtg′ conformation angle between g and g′ is about 55° and the ttt conformation is a slightly distorted all-trans alternating planar zigzag with ±175° repeating motif. The average distance between adjacent monomer units in the β-PVDF is 2.567 Å. The energy difference between the α- and β-chains is about 10 kJ/mol per monomer unit. The dipole moment will be affected by chain curvature (with a radius of about 30.0 Å for ideal β-chain) and by defect concentration other than localization. The chain lengths and defects will not significantly affect the mean polarizability. The calculations indicated that there are some additional characteristic vibrational modes that may help identification of the α- and β-phase PVDF.  相似文献   

16.
作为一种新型改性方法,电晕诱导接枝进行聚合物微孔膜表面改性具有设备简单、可连续运行、不破坏膜本体结构、操作条件温和、辐照强度均匀以及产物纯净等优点。本研究中,使用电晕处理设备对自制PVDF平板膜表面进行了电晕放电处理,电压为8~12kV,处理时间为20~100s。然后将其浸入丙烯酸溶液中进行接枝聚合反应,单体浓度为15vt%,反应温度为50℃,反应时间为5小时。研究该方法可行,并且接枝效果和电晕电压、电晕时间、接枝时间和单体浓度成正比。  相似文献   

17.
作为一种新型改性方法,电晕诱导接枝进行聚合物微孔膜表面改性具有设备简单、可连续运行、不破坏膜本体结构、操作条件温和、辐照强度均匀以及产物纯净等优点.本研究中,使用电晕处理设备对自制PVDF平板膜表面进行了电晕放电处理,电压为8~12kV,处理时间为20~100s.然后将其浸入丙烯酸溶液中进行接枝聚合反应,单体浓度为15vt%,反应温度为50℃,反应时间为5h.研究该方法可行,并且接枝效果和电晕电压、电晕时间、接枝时间和单体浓度成正比.  相似文献   

18.
Utilizing polymer electrospinning technology, novel electrolyte membranes based on poly(vinylidene fluoride) (PVDF)/organomodified clay (OC)/tripropyleneglycol diacrylate (TPGDA) composite nanofibers with a diameter of 100–400 nm were fabricated for application in lithium batteries. Ultraviolet photo‐polymerization of electrospun PVDF/OC/TPGDA nanofibers generated chemically crosslinked TPGDA‐grafted PVDF/OC nanofibers exhibiting robust mechanical and electrochemical properties. The prepared fibrous PVDF/OC/TPGDA electrolytes were characterized in terms of morphology, crystallinity, electrochemical stability, ionic conductivity and cell cycleability. Based on differential scanning calorimetry analysis, the crystallinity of PVDF decreased by ca 10% on employing the OC and TPGDA. Compared with pure PVDF film‐based electrolyte membranes, the TPGDA‐ and OC‐modified PVDF electrolyte membranes exhibited improved mechanical properties and various electrochemical properties. The OC‐ and TPGDA‐modified microporous membranes are promising candidates for overcoming the drawbacks of the lower mechanical stability of fibrous‐type electrolytes with further improvement of electrochemical performance. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
A new strategy to compatibilize immiscible blends is proposed, using graphene oxide (GO) nanosheets taking advantage of their unique amphiphilic structures. When 0.5 or 1 wt% GOs were incorporated in immiscible nylon 6/poly(vinylidene fluoride) (PVDF) (90/10 wt%) blends, the dimension of PVDF dispersed particles was markedly reduced and became more uniform, revealing a well‐defined compatibilization effect of GOs on the immiscible blends. Correspondingly, the ductility of the compatibilized blends increased several times compared with uncompatibilized immiscible blends. In order to explore the underlying compatibilization mechanism, Fourier transform infrared and Raman spectra were applied to suggest that the edge polar groups of GOs can form hydrogen bonds with nylon 6 while the basal plane of GOs can interact with electron‐withdrawing fluorine on PVDF chains leading to the so‐called charge‐transfer C–F bonding. In this case, GOs exhibit favorable interactions with both nylon 6 and PVDF phase, therefore stabilizing the interface during GO migrations from PVDF/GO masterbatch to nylon 6 phase, which can minimize the interfacial tension and finally lead to compatibilization effects. Obviously, this work may open a broad prospect for GOs to be widely applied as a new compatibilizer in industrial fields. © 2012 Society of Chemical Industry  相似文献   

20.
采用RC90 HAAKE转矩流变仪对PVDF复合材料与PVDF进行流变性能研究,结果显示,PVDF复合材料与PVDF一样属于非牛顿流体,具有典型的切力变稀行为,PVDF复合材料的粘流活化能和非牛顿指数n较PVDF高,说明PVDF复合材料对剪切速率的依赖性较PVDF小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号