首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absorption and subsequent desorption behaviors of amorphous polymer films of PEEK poly(ether ether ketone), PEEKK poly(ether ether ketone ketone), and PEKK poly(ether ketone ketone) in solvent of 1,2-dichloroethane (C2H4Cl2) are investigated and compared. The equilibrium absorption weight (M) of these polymers is related to their molecular ketone content or molecular chain rigidity and also to the experimental conditions. Especially, at a certain temperature, the molecular chains in the solvent can be polarized, which leads to producing greater M for polymer films; for example, at 60°C, M = 46% for PEEK and M = 65% for PEKK. The pseudodiffusion coefficients for PEEK, PEEKK, and PEKK all surpass the 6.0 × 10−12 m2 s−1. The polymer's molecular polarization has been proved in concentrated sulfur acid. Results also show that amorphous resin's films become white and creeped in dichloroethane, which is more serious when metaphenyl links are introduced into PEEKK or PEKK molecular main chains. The residual solvent of 1% or so often exists in the films, even though a long desorption time (over 100 h) has been proceeded. Absorption has induced crystallization of amorphous polymer films, but this crystallization process is slightly different from that of the films crystallized from both the glassy state and the melting state in the solvent, which makes the amorphous interlayers grow progressively and more condensely; thus, the crystallized films will have higher Tg's than these crystallized under annealing condition. The morphology results have shown that the solvent-crystallized films are less toughened than the amorphous ones because of the intermediate layer between the induced crystallized area and the amorphous area in the core. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2065–2075, 1998  相似文献   

2.
The influence of the crystalline phase on the viscoelastic behavior of poly(aryl ether ether ketone) (PEEK) films is assessed by dynamic mechanical spectrometry. Prediction of the viscoelastic behavior near Tg of semicrystalline films is performed through mechanical and physical modelings. Changes in the α relaxation induced by the crystalline phase are related to both the mechanical coupling between phases and the decrease in the molecular mobility of chains, which is improved for samples showing a broad crystallite size distribution. Crystalline phase also induces some modifications in the characteristics of the β spectrum. The reinforcement effect brought by the crystalline phase in such a temperature range is predicted through a mechanical model. Then, changes in tan δ level in the β1 region induced by the crystalline phase result from the mechanical coupling between phases. The magnitude of such changes only depends on the crystallinity ratio and it is not controlled by the crystallite size distribution. The crystalline phase also induces changes in the pattern of the β2 transition, which could be attributed to modifications in the conformations of the chains near the crystalline entities and/or the magnitude of interactions between chains. Such modifications seem to be sensitive to the thermal history of PEEK samples. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1041–1052, 1997  相似文献   

3.
A new low melting temperature poly(aryl ether ketone) (PAEK) thermoplastic polymer (Victrex AE 250) was investigated through thermal and rheological analysis of films and flakes. DSC was assigned to evaluate the influence of cooling rate on crystallinity and thermal transitions. Rheometry was used to assess its flowing behavior through the evaluation of dynamic moduli and complex viscosity in the melted state. The relaxation times were found from the rheological curves: they are between a few ms to 200 ms for AE 250, lower than those found for PEEK 450, meaning a faster mobility of macromolecules. The thermal activation energy, Ea obtained from Time Temperature Superposition is the same for films and flakes in spite of a lower viscosity for flakes. The molecular weight between entanglements is evaluated at 8000 g.mol−1 for FMc and 13,000 for FLc, it is compared to the value of about 2000 g.mol−1 found for PEEK 450 with the same procedure. Also, the viscosity was compared to other commercial PAEK such as PEEK and PEKK based on data from the literature. This polymer appears very efficient to compete with high performance thermoplastics to be processed by compression molding, out of autoclave consolidation, additive manufacturing, and welding.  相似文献   

4.
The present study deals with the consolidation of an ultra‐high performance polymer, the poly(ether ether ketone) (PEEK), for structural applications, using the powder metallurgy (PM) way, and more precisely the Spark Plasma Sintering (SPS) processing. The effects of SPS parameters such as temperature, pressure, and dwell time on density and mechanical properties of PEEK were investigated via a Design of Experiments (DoE). A temperature of 250 °C, a pressure of 40 MPa, and a dwell time of 20 min have been identified as the optimal SPS process parameters. In these conditions, a density of 1.31 g / cm3 was reached and homogeneous mechanical properties in the volume determined by means of compression tests were found with a compressive modulus of 2.75 GPa, a yield strength of 134 MPa, and a maximum compressive strain of 43%. These results are better than those of commercial products obtained by injection molding. The pressure appears to be a significant parameter on PEEK properties and plays positive or negative roles according to the responses of DoE studied. To our knowledge, it is one of the first studies based on the application of the PM techniques for PEEK consolidation showing the possibility to process below its melting point. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44911.  相似文献   

5.
Semiconducting amorphous carbon thin films were directly grown on SiO2 substrate by using chemical vapor deposition. Raman spectra and transmission electron microscopy image showed that the a-C films have a short-range ordered amorphous structure. The electrical and optical properties of the a-C thin films were investigated. The films have sheet resistance of 3.7 kΩ/□ and high transmittance of 82%. They exhibit metal-oxide-semiconductor field effect transistor mobility of 10–12 cm2 V−1 s−1 at room temperature, which is comparable to previous reported mobility of amorphous carbon. The optical band gap was calculated by Tauc’s relationship and photoluminescence spectra showed that the films are semiconductor with an optical band gap of 1.8 eV. These good physical properties make the a-C films a candidate for the application of transparent conducting electrodes.  相似文献   

6.
Poly(aryl ether ether ketone) (PEEK) films irradiated with 2 MeV O+ and Ar+ ions to fluences in the range 1011–1013 cm?2 were treated with 5 mol/L LiCl aqueous solution at 100°C for 1 h. After removal of excessive, weakly bound LiCl the samples were annealed at temperatures from 50 to 250°C for 1 h to check the mobility of the incorporated LiCl. The amount of incorporated LiCl and its depth profile were determined using the neutron depth‐profiling (NDP) technique, which makes use of the 6Li(nth, 4He) 3H nuclear reaction. Up to the maximum annealing temperature no significant escape of the LiCl was observed. With increasing annealing temperature, a gradual migration of LiCl dopant toward the sample surface was observed on the irradiated PEEK samples. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2780–2784, 2002; DOI 10.1002/app.10253  相似文献   

7.
The aim of study was to prepare novel polyamides with improved solubility and processability without sacrifice of their thermal and mechanical properties. Polyamides containing ether and sulfone units were obtained via condensation of a special diamine with various diacid chlorides. Poly(ether ether sulfone amide)s were obtained in good inherent viscosities ranging from 0.72 to 0.84 dL/g. All the polyamides were amorphous and readily soluble in polar solvents and swelled in CH2Cl2 and tetrahydrofuran. Flexible films of polymers were obtained by solution casting. Polyamide films exhibited good mechanical and thermal stability including the temperature for 10% weight loss of 449–476 °C.  相似文献   

8.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999  相似文献   

9.
A multiblock copolymer (BCP) containing amorphous poly(aryl ether ketone) (PAEK) and thermotropic liquid crystalline polymer (TLCP) segments was synthesized. The chemical structure and properties of BCP were characterized by fourier‐transform infrared spectrometer (FTIR), differential scanning calorimeter (DSC), gel permeation chromatograms (GPC), thermogravimetry analysis, polar light microscope (PLM), and solubility test respectively. BCP can dissolve in chloroform because of soluble PAEK block bonded with TLCP block, which was insoluble. The peak of the original PAEK oligomer was no more present in the GPC traces of the block copolymer. These facts indicated that polymer synthesized should be copolymers of the two components rather than blends. A single Tg at 138.1°C and broad melting endotherm at 315.7°C can be observed. The liquid crystalline texture of BCP showed uniformity in the view after heat treated for 10 min above its Tm under PLM. Ternary blends of poly(ether ether ketone) (PEEK)/TLCP/BCP were prepared by extrusion and characterized by DSC. DSC results showed that the crystallization temperature of PEEK phase in the blends shifted higher with the addition of TLCP. Wide angle X‐ray diffraction investigations indicated that the crystalline structure of PEEK was not disturbed by blending or compatibilizing. Scanning electron microscope and mechanical tests confirmed the compatibilizing effect of BCP. Reduction in dispersed phase TLCP size was observed when 2 phr by weight of compatibilizer was added to the blend. Measurement of the tensile properties showed increased elongation as well as improved modulus and strength to some extent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
In this work, virgin and sulfonated poly(ether ether ketone) films (PEEK and SPEEK, respectively) have been studied by dynamic mechanical analysis, modulated differential scanning calorimetry, wide‐angle X‐ray diffraction, birefringence, and optical microscopy. The properties of the unmodified polymer have been addressed to assess the original morphological characteristics and the changes induced by sulfonation. In general, the introduction of ionic groups in the polymer backbone alters dramatically the intrinsic properties of the parent material. The particular thermomechanical response exhibited by PEEK and SPEEK samples, characterized by a hysteresis loop, can be explained by the reversible and irreversible relaxation–orientation of the microstructure, even in the sub‐Tg region. The results showed that the preparation conditions largely determine the nonequilibrium morphological features of both compression‐molded PEEK films and solvent‐cast SPEEK membranes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 756–774, 2006  相似文献   

11.
The composites of poly(ether ether ketone) (PEEK) filled with micrometer‐sized Cu and Fe particles were prepared by compression molding. The friction and wear behaviors of the composites were examined on a pin‐on‐disc friction‐and‐wear tester by sliding PEEK‐based composites against tool steel at a sliding speed of 1.0 m s−1 and a normal load of 19.6N. Optical microscopic analysis of the transfer film and of the worn pin surfaces and wear debris was performed to investigate the wear mechanisms of the composites. It was found that Cu and Fe used as filler considerably decreased the wear rate of PEEK. A thin, uniform, and tenacious transfer film was formed when Cu was used as the filler, and a nonuniform and thick transfer film was formed when Fe was used as the filler. The transfer film played a key role in increasing the wear resistance of the PEEK composites. Plastic deformation was dominant for wear of PEEK–Cu, while abrasion and adhesion were dominant for wear of PEEK–Fe. Because of the strong affinity between Fe as filler and its identical counterpart in the counterface tool steel surface, the adhesion between the PEEK–Fe composite surface and the counterface tool steel surface was thus severe. This contributed to the generation of a thicker transfer film for PEEK–Fe. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 179–184, 2000  相似文献   

12.
The influence of polymer on the structure, optical, electrical, and thermal properties of nanoscale fillers is a crucial clue to introduce these novel nanocomposites to service life applications. In the present work, different compositions of cadmium-doped zinc oxide (CdxZn1xO) nanopowders, x = 0.1, 0.3, and 0.5, with a uniform particle size of around 8 nm have been synthesized. A fixed amount, 1 wt %, of the prepared nanopowders was blended with aryl poly ether ether ketone (PEEK) by solution mixing to prepare PEEK/CdxZn1xO nanocomposite films. The structure and morphology of CdxZn1xO nanopowders and PEEK/CdxZn1xO nanocomposite films have been characterized using transmission electron microscopy and X-ray diffraction. The results showed that the particle size of nanoscale filler decreases from 10 nm to 5–7 nm when mixed with PEEK and these nanocomposites have amorphous structure. The thermogravitational analysis results show that a small amount of CdxZn1xO nanopowders (1 wt %) without surface modification can greatly improve the thermal stability of PEEK. The UV–vis spectra showed that there is absorption peak at 284 nm due to interband π−π* electronic transition. This absorption peak gets shifted toward the longer wavelength region as the concentration of cadmium ions increase in the PEEK matrix. This red shift results in a decrease of the band energy gap. The electrical conductivity of PEEK/CdxZn1xO nanocomposite films was increased as the cadmium ion increases. The results showed that PEEK/CdxZn1xO nanocomposite films can be used in thermostat and/or fire alarm devices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Low, intermediate, and high strain rate compression testing (1.7 × 10?4 to 2500 s?1) of the hydroxyl‐terminated polybutadiene (HTPB) propellant at room temperature, were performed using a universal testing machine, a hydraulic testing machine, and a split Hopkinson pressure bar (SHPB), respectively. Results show that the stress linearly increases with strain at each condition; the increasing trend of stress at a given strain with the logarithm of strain rate changes from a linear to an exponential form at 1 s?1. By combining these characteristics, we propose a rate‐dependent constitutive model which is a linearly elastic component as a base model, then multiplied by a rate‐dependent component. Comparison of model with experimental data shows that it can characterize the compressive mechanical properties of HTPB propellant at strain rates from 1.7 × 10?4 to 2500 s?1. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43512.  相似文献   

14.
A series of blends with various compositions are prepared by melt extrusion on the basis of novel copoly(phthalazinone biphenyl ether sulfone) (PPBES) and poly(ether ether ketone) (PEEK). The melt flowability, mechanical and thermal properties of the blends are studied. The results show that the incorporated PEEK has a large influence on the melt viscosity and thermal stability of blends. The tensile strength of the blends remains at about 90 MPa at room temperature; PPBES improves the mechanical properties of PEEK at 150°C. The flexural strength and modulus of the PPBES/PEEK blends also increase with the addition of PEEK.  相似文献   

15.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

16.
Polyaryletherketone is a kind of special engineering plastics with excellent comprehensive properties, high strength, good stability, and almost insoluble in any common solvent except concentrated sulfuric acid at room temperature. However, its high processing temperature also hinders its application and development in the foam. Here, a series of polyetheretherketone (PEEK) and diphenyl polyetheretherketone (PEDEK) composite foams are prepared by temperature induced phase separation, using diphenyl sulfone as solvent. The microstructure, thermal and mechanical properties of PEEK and PEDEK foam are compared. Highly porous PEEK and PEDEK foams with densities ranging from 0.13 to 0.25 g cm−3, with compressive strength ranging from 0.68 to 2.6 MPa, respectively, are produced. Meanwhile, the introduction of diphenyl structure can effectively improve the performance of PEEK foams at high temperature. It is found that PEDEK foam has a higher operating temperature than PEEK, and the compressive strength of 0.24 g cm−3 foam is still ≈1 MPa at 200 °C.  相似文献   

17.
In order to obtain poly(ether ether ketone)s having enhanced solubility and processability without extreme loss of other properties, a series of copoly(ether ether ketone)s (Co‐PEEKs) with pendant phenyl groups were synthesized from 1,1‐bi(4‐hydroxyphenyl)‐1‐phenylethane (ph‐BPA), hydroquinone and 4,4′‐difluorobenzophenone via aromatic nucleophilic substitution reaction. The structures and properties of the Co‐PEEKs were characterized using Fourier transform infrared and 1H NMR spectroscopies, differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction and solubility testing. These Co‐PEEKs have inherent viscosities in the range 0.14–1.09 dL g?1, and their number‐average and weight‐average molecular weights reach 72 659 and 163 400 g mol?1, respectively. The Co‐PEEK with the lowest content of ph‐BPA has a semi‐crystalline nature and is only soluble in 98% sulfuric acid. However, with an increase of ph‐BPA in the Co‐PEEKs, they become amorphous and readily soluble in a wide range of organic solvents and can afford tough films. These Co‐PEEKs have glass transition temperatures of 137–180 °C depending on the content of ph‐BPA. All the Co‐PEEKs have initial degradation temperatures above 480 °C in nitrogen atmosphere. Thus, these Co‐PEEKs with excellent thermal stability, good solubility and processability have potential for use in high‐performance films, coatings, hollow fiber membranes, etc. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
A series of modified poly(ether ether ketone) (PEEK) polymers were synthesized by introduction of addition ether groups from dihydroxydiphenyl ether (DHDE) into the PEEK structure. The inherent viscosity of the DHDE-modified PEEK increased with reaction time at 320 °C. DSC thermograms showed the melting points of the obtained PEEK decreased with the increase of the DHDE content in the backbone. The degradation temperature (Td) was slightly decreased by the introduction of DHDE. The crystallinity as measured via the X-ray diffraction (XRD) increases with the introduction of DHDE into the modified PEEK. The crystalline structure was identified as an orthorhombic structure with lattice constants a = 7.72 Å, b = 5.86 Å, and c = 10.24 Å. Due to the glass transition temperature (Tg) and the melting temperature (Tm) decreasing with the increase of the DHDE content in the reaction system. the processability of the resultant PEEK could be improved through this DHDE modification.  相似文献   

19.
P.J. Rae  E.N. Brown 《Polymer》2007,48(2):598-615
The mechanical properties of PEEK 450G have been extensively investigated. The compressive properties were measured at strain rates between 1 × 10−4 and 3000 s−1 and temperatures between −85 and 200 °C. The tensile properties were measured between the strain rates of 2.7 × 10−5 and 1.9 × 10−2 s−1 and at temperatures between −50 and 150 °C. The Taylor impact properties were investigated as a function of velocity and various large-strain compression tests were undertaken to explain the results. The fracture toughness was investigated as a function of temperature and compared with previous literature. Additionally, the fracture surfaces were studied by microscopy. As with all semi-crystalline polymers the mechanical response is a strong function of the strain rate and testing temperature. A previously reported phenomenon of darkening observed in Taylor impacted samples is shown to be due to reduced crystallinity brought about by large compressive strain. For samples deformed to large compressive strains using a variety of techniques and strain-rates the measured Vickers hardness was found to decrease in accordance with reduced crystallinity measured by other techniques.  相似文献   

20.
The unsaturated polyoxyethylene (PEO) was synthesized by copolymerization of ethylene oxide with allyl glycidyl ether in toluene using bimetallic-oxo-alkoxide as a catalyst. The effects of polymerization conditions on conversion and intrinsic viscosity of the copolymer were studied. The unsaturated copolymer was characterized with infrared spectra, 1H NMR, and wide-angle X-ray diffraction. The relationship between crystallinity of the copolymers and conductivity of their LiClO4 complexes were investigated. The copolymer with ∼ 65 wt % PEO content exhibits a room temperature conductivity of 1 × 10−4 S cm−1 at a molar ratio of EO/Li = 20. The unsaturated PEO was graft-copolymerized with styrene using 2,2′-azobis(isobutyronitrile) as initiator in toluene, with grafting efficiency ∼ 50%. The purified graft copolymer was characterized with infrared spectra, 1H NMR, and wide-angle X-ray diffraction, and was shown to have good emulsifying properties and a phase-transfer catalytic property. LiClO4 complex of the graft copolymer with 70 wt % PEO content exhibits a room temperature conductivity approaching 1 × 10−4 S cm−1 at molar ratio of EO/Li = 20/1. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2417–2425, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号