首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of four different external Lewis bases on propylene polymerization using the MgCl2-supported TiCl4 catalyst were studied in the context of the variation of the chemical complexes formed between catalyst, catalyst support and internal Lewis base, and the interactions between complexes and external Lewis base, The internal Lewis base used in this study was dioctyl phthalate. With ethyl benzoate as the external donor no change in activity was observed, but the interaction between ethyl benzoate and MgCl2·phthaloyl chloride complex resulted in a decrease of isotacticity. Increasing the bulkiness of the external Lewis base hindered the monomer coordination. It was found that the relative amount of the phthaloyl chloride complex to other complexes played an important role in the formation of active sites.  相似文献   

2.
Ziegler–Natta heterogeneous catalytic systems are extensively used to polymerize ethylene and propylene. Some industrial catalysts consist of TiCl4 chemisorbed on activated MgCl2 and subsequently reduced and alkylated by reaction with an aluminum alkyl (generally AlEt3). Lewis bases are added to the catalytic systems to control the enantio-selectivity for the production of isotactic polypropylene. Our aim is to clarify the chemical composition of the active centers by modern surface science methods. Model catalysts are prepared in the form of ultra-thin films by gas-phase deposition on a gold foil in ultrahigh vacuum. Under these conditions, MgCl2 films grow to controlled thickness via a layer-by-layer mechanism, as revealed by AES and XPS. TiCl4 can be deposited on these films near room temperature by both electron irradiation-induced and metallic magnesium-induced chemical vapor deposition. Angle-resolved XPS studies indicate that these films consist of a few layers of TiCl2 with one monolayer of TiCl4 chemisorbed on its surface. The exposure of these titanium chloride films to the co-catalyst AlEt3 produces an active model Ziegler–Natta catalyst. XPS analysis reveals the presence of TiCl2Et on the catalyst surface: this is believed to be the active site. Prolonged reaction with the co-catalyst reduces the titanium sites to TiClEtn (n = 1 and/or 2). High molecular weight polyethylene and polypropylene are synthesized on these catalysts, as shown by Raman spectroscopy. Highly isotactic polypropylene is produced without need for stereo-regulating Lewis bases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The polymerization of butadiene (Bd) with chromium(III) acetylacetonato [Cr(acac)3]‐trialkylaluminum (AlR3) or methylaluminoxane (MAO) catalysts was investigated for the synthesis of 1,2‐poly(Bd). The polymerization of Bd was found to proceed with Cr(acac)3‐AlR3 (R‐Me, Et, i‐Bu) catalysts to give poly(Bd) with a high 1,2‐vinyl content, but highly isotactic 1,2‐poly(Bd) was not synthesized. The Cr(acac)3‐MAO catalyst gave a polymer consisting of low 1,2 units. The effects of the Al/Cr mole ratios on the polymerization of Bd with the Cr(acac)3‐AlR3 catalysts were observed. With an increase of Al/Cr mole ratios, the isotactic (mm) content of the polymer increased but the 1,2‐vinyl contents decreased. The effects of the aging time and temperatures of the catalysts on the polymerization of Bd with the Cr(acac)3‐AlR3 catalysts were also observed, and the lower polymerization temperature and the prolonged aging time were favored to produce the 1,2‐vinyl structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1621–1627, 2000  相似文献   

4.
Summary The influence of various cocatalysts on the activity and stereospecificity of a supported magnesium–titanium catalyst, generated by in situ reduction of titanium (IV) chloride using a Grignard reagent (MgCl2/TiCl3) or prepared by the recrystallization method (MgCl2/2M2P/ED/TiCl4, 2M2P= 2-methyl-2-pentanol, ED= dibutyl phthalate or ethyl benzoate), in the 1-hexene polymerization was investigated. The MgCl2/TiCl3 catalyst showed the highest activity but the lowest stereospecificity in the 1-hexene polymerization with all investigated cocatalysts. The MgCl2/2M2P/ED/TiCl4 catalyst with dibutyl phthalate as an internal electron donor was characterized by the highest stereospecificity and led to the polymers with high molecular weight. All catalysts showed the highest activity and stereospecificity when triisobutylaluminium was used as a cocatalyst. The addition of a small amount of ethyl benzoate as an external electron donor ([Al]/[ED] 10:1) led to considerable improvement of the stereospecificity of the MgCl2/TiCl3 catalyst in comparison with the catalysts prepared by the recrystallization method.  相似文献   

5.
Hydrolyzable functional silanes are used as silicone elastomer crosslinkers. The hydrolysis, triggered by air moisture, leads to crosslinking of linear polymer chains to three-dimensional networks. The properties of these elastomers depend on the silane structure. The influence of the structure has been studied for RSi(OR´)3 silanes with R = Me, Et, Pr, Bu, Pentyl (Pe), Vinyl (Vi) and Phenyl (Ph) for hydrolyzable acetoxy or oximino groups. Reactivity differences have been observed. The cure kinetics follows the order Vi > Ph ~ Me > Et > Pr > Bu > Pe leading to a decrease in surface curing rate from Vi to Pe. The cure thermodynamics, i.e. completeness of cure, follows the order Me > Et > Pr > Bu > Pe and Vi > Ph leading to a decrease in the crosslink density from Me to Pe. The lower degrees of cure are related to steric and inductive effects of the functional groups. Oximinosilanes showed a lower reactivity compared to acetoxysilanes, because of a Si—ON bond being more stable than a Si—OAc bond. This also leads to slower surface cure and lower crosslink density. Organometallic tin used for the catalysis of oximinosilane systems gave results similar to organometallic titanium. For acetoxysilane systems, the titanium system was found to be more efficient. Silicone materials tailored to specific requirements can be designed. So the cure rate, release and mechanical properties can be adjusted with the selection of appropriate silanes.  相似文献   

6.
The article describes that sterically hindered isobutylaluminum aryloxides with bulky tBu substituents at 2,6‐ positions of aryl fragment, i.e. (2,6‐di‐tBu,4‐R‐C6H2O)AliBu2 (R = H ( 1‐DTBP ), Me ( 1‐BHT ), tBu ( 1‐TTBP )) and (2,6‐di‐tBu,4‐R‐C6H2O)2AliBu (R=H( 2‐DTBP ), Me( 2‐BHT )) can serve as cocatalysts for metallocene complexes. Isobutylaluminum aryloxides have been applied for activation of rac‐Et(2‐MeInd)2ZrMe2 in homopolymerization of ethylene, propylene, copolymerization of ethylene and propylene, and terpolymerization of ethylene, propylene, and 5‐ethylidene‐2‐norbornene at Al/Zr = 300 mol/mol. The type of R substituent at 4‐position has a significant effect on catalyst activity. The catalytic system with 1‐TTBP showed the highest activity in all homo‐ and copolymerization processes. Diisobutylaluminum aryloxides provide much higher activity to the systems in all polymerization processes and stronger ability for propylene incorporation in copolymer than diaryloxides. The activities of the systems with isobutylaluminum aryloxides are similar or exceed that of the system with MAO as activator as have shown for propylene polymerization. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43276.  相似文献   

7.
Propylene polymerizations were conducted in slurry phase batch process using different dialkyldimethoxysilanes as an external donor with magnesium dichloride (MgCl2) supported titanium tetrachloride (TiCl4) catalyst having diisobutylphthalate (DIBP) as an internal donor. The dialkyl group of the external donors like dimethyldimethoxysilane (DMDMS), diisopropyldimethoxysilane (DIPDMS) and dicyclopentyldimethoxysilane (DCPDMS) were found to influence on the microstructure and the molecular weight characteristics of synthesized polypropylene in addition to the initial rate of polymerization and decay index. DCPDMS gave highest productivity and high molecular weight polypropylene with improved kinetics while DMDMS gave lowest productivity in comparison. The molar equivalent combination of DCPDMS with DIPDMS and DMDMS respectively, resulted in producing polypropylene with tacticity pattern and molecular weight characteristics in between the individual alkoxysilane based system indicating the effect of alkyl group on the catalyst performance.  相似文献   

8.
The addition of 4-methylpyridine to Me2Al[OC(Me)C6H4-2-O] produced the relatively stable five-coordinate Lewis acid–base adduct Me2Al[OC(Me)C6H4-2-O]·(γ-picoline). The resulting compound has been characterized by 1H and 27Al NMR spectroscopy and cryoscopic molecular weight measurements and the molecular structure has been confirmed by X-ray crystallography. X-ray structure analysis of this simple five-coordinate complex reveals that the trans-influence of axial substituents is a significant factor controlling the structure and stability of five-coordinate aluminum compounds.  相似文献   

9.
Copolymerization of ethylene with 1‐octadecene was studied using [η51‐C5Me4‐4‐R1‐6‐R‐C6H2O]TiCl2 [R1 = tBu (1), H (2, 3, 4); R = tBu (1, 2), Me (3), Ph (4)] as catalysts in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]. The effect of the concentration of comonomer in the feed and Al/Ti molar ratio on the catalytic activity and molecular weight of the resultant copolymer were investigated. The substituents on the phenyl ring of the ligand affect considerably both the catalytic activity and comonomer incorporation. The 1 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system exhibits the highest catalytic activity and produces copolymers with the highest molecular weight, while the 2 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system gives copolymers with the highest comonomer incorporation under similar conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Summary This paper describes a new class of supported Lewis acid catalysts which are based on partially crystalline polypropylene. The Lewis acid, such as EtAlCl2, is chemically bonded to the side chain of polypropylene and serves as catalyst for the cationic polymerization of isobutylene. This type supported catalyst can be easily recovered and reused for many reaction cycles without significant loss of its reactivity. The unique features of the structure of polypropylene offers the catalyst with high surface area and good mobility which account for the high catalytic activity. In addition, polypropylene is chemically and physically stable during the processes.  相似文献   

11.
Activity of a titanium catalyst supported on a bimetallic magnesium–aluminium system, involving a Lewis base [MgCl2(THF)2/Al(C2H5)2Cl], was studied in ethylene polymerization, and the effect of the catalyst composition on the properties of the final polymer produced was investigated. Analysis and discussion of the findings covering also some part of the kinetic study, resulted in defining the roles for MgCl2 and a Lewis base in the third-generation Ziegler-Natta catalysts. MgCl2 forms a bimetallic complex with an organoaluminium compound, which involves also a Lewis base. Its reaction with TiCl4 yields a very active catalyst wherein the Mg : Ti molar ratio is close to 1. This means that MgCl2 is involved in creating catalytic active sites. The structure of these catalytic sites were suggested. Hence, the role for MgCl2 can be twofold: it is a component of a catalytic active site, and it is a support if Mg : Ti > 5. It was found in the study that the catalytic function of MgCl2 can be maintained while its supporting function can be omitted. Thus, MgCl2 can be substituted for Al2O3 and the catalytic system obtained will have the same activity. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1005–1011, 1998  相似文献   

12.
Summary Preparations of soluble TiCl3 catalysts by reduction of TiCl4 with some types of Grignard reagents were carried out in halogenated hydrocarbon solvents by using appropriate ethers as donor. The soluble TiCl3·MgX2·ether complex catalysts and triisobutylaluminum as co-catalyst showed high activities for the copolymerization of ethylene with propylene. It was first found that the soluble TiCl3·MgX2·ether complex catalysts enhance the activities for the copolymerizations in the same manner as solid titanium catalysts supported on MgCl2 which show high activities for homopolymerizations of olefin monomers. The copolymers obtained possessed low crystallinities. Also, the copolymers seem to contain microblock sequences and have outstandingly high tensile strength and elongation at break compared to copolymers by the conventional VOCl3/Al(Et)1.5Cl1.5 catalyst system.  相似文献   

13.
徐秀东  谭忠  周奇龙  张锐 《工业催化》1992,28(10):48-53
在铝钛物质的量比为25、50、100、150、200、300条件下,研究丙烯聚合用BCZ-108催化剂的聚合行为及聚丙烯的主要性能,并与常规应用的NA催化剂进行对比。结果表明,随着铝钛物质的量比的增大,两种催化剂的聚合反应速率的衰减越来越快,聚丙烯的立体定向性越来越低,熔点越来越低,分子量分布越来越宽;BCZ-108催化剂的聚合活性比NA催化剂高30%以上;两种催化剂的聚合活性在铝钛物质的量比为50时达到最高,此时BCZ-108催化剂的活性为1 212 g·g-1,NA催化剂的活性为907 g·g-1。  相似文献   

14.
采用SiO2、MgCl2以及苯乙烯-丙烯酸共聚物(PSA)合成了SiO2/MgCl2.xBu(OH)2/PSA无机/有机复合载体并负载TiCl4,得到具有SiO2无机支撑层、MgCl2.xBu(OH)2加合物以及PSA有机载体3种化学环境的SiO2/MgCl2.xBu(OH)2/PSA/TiCl4复合载体负载催化剂。研究了复合载体组成对催化剂的载钛量、形貌以及乙烯聚合行为的影响。当PSA存在时,催化剂的载钛量明显降低。乙烯/1-己烯共聚的反应动力学结果表明,与SiO2/MgCl2.xBu(OH)2/TiCl4相比,无机/有机复合载体负载催化剂的动力学曲线具有一段较长的受扩散控制的诱导期,并且随着PSA质量分数的增加,诱导期延长,动力学曲线由衰减型转变为上升-稳定型。由于复合载体具有多种化学环境,使得负载催化剂活性中心种类增多,共聚性能提高,聚乙烯产品分子量分布变宽,熔流比显著提高。根据聚乙烯树脂的扫描电镜照片,探讨了复合载体负载催化剂在聚乙烯生长过程中的破碎机理。  相似文献   

15.
The surface composition and structure of model Ziegler-Natta catalysts, polymerizing α-olefins to produce polyolefins, have been studied using modern surface science techniques and compared with their polymerization behaviors. Two types of thin films — TiClx/MgCl2 and TiCly/Au — were fabricated on an inert gold substrate, using chemical vapor deposition methods, to model the high-yield catalysts of MgCl2-supported TiCl4 and TiCl3-based catalysts, respectively. The model catalysts could be activated by exposure to triethylaluminum (AlFt3) vapor. Once activated, both catalysts were active for polymerization of ethylene and propylene in the absence of excess AlEt3 during polymerization. The model catalysts had polymerization activities comparable to the high-surface-area industrial catalysts. Though both catalysts were terminated with chlorine at the surface, each catalyst assumed different surface structures. The TiClx/MgCl2 film surface was composed of two structures: the (001) basal plane of these halide crystallites and a non-basal plane structure. The TiCly/Au film surface assumed only the non-basal plane structure. These structural differences resulted in different tacticity of the polypropylene produced with these catalysts. The TiClx/MgCl2 catalyst produced both atactic and isotactic polypropylene, while the TiCly/Au catalyst without the MgCl2 support produced exclusively isotactic polypropylene. The titanium oxidation state distribution did not have a critical role in determining the tacticity of the polypropylene.  相似文献   

16.
Poly(1‐octene) was synthesized by polymerization of 1‐octene using high performance MgCl2‐supported TiCl4 in combination with triethyl aluminum (TEAl) as cocatalyst in n‐hexane for 2 h. Two catalysts, C1 (diester catalyst) having di‐isobutyl phthalate as internal donor and C2 (monoester catalyst) having ethyl benzoate as internal donor were utilized for the atmospheric polymerizations to evaluate the influence of structurally different internal donors on the productivity, rate of polymerization and molecular weight profiles. The kinetic profile assessed in terms of variation of reaction parameters like temperature, cocatalyst to catalyst molar ratio and monomer concentration was found to be dependent on them. From these kinetic analyses, optimize conditions for polymerizations of 1‐octene using diester as well as monoester catalyst were elucidated. The difference in the performance of diester and monoester catalyst system can be explained in terms of stability of active titanium species and chain transfer process. NMR spectroscopy of synthesized poly(1‐octene) indicate predominantly isotactic nature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The application of heterogeneous catalysts in dimethyl carbonate (DMC) synthesis from methanol is hindered by low activation efficiency of methanol to methoxy intermediates (CH3O*), which is the key intermediate for DMC generation. Herein, a catalyst of alkali metal K anchored on the CuO/ZnO oxide is rationally designed for offering Lewis acid–base pairs as dual active centers to improve the activation efficiency of methanol. Characterizations of CO2-TPD, NH3-TPD, XPS, and DRIFTS revealed that the addition of Lewis base K observably boosted the dissociation of methanol and combined with Lewis acid CuO/ZnO oxide to adsorb the formed CH3O* stably, thus synergistically promoted the transesterification. Finally, the CuO/ZnO-9%K2O catalyst exhibited the optimal catalytic activity, achieving a high yield of 74.4% with an excellent selectivity of 98.9% for DMC at a low temperature of 90°C. The strategy of constructing Lewis acid–base pairs provides a reference for the design of heterogeneous catalysts.  相似文献   

18.
The gas phase polymerization of 1,3‐butadiene (Bd), with supported catalyst Nd(naph)3/Al2Et3Cl3/Al(i‐Bu)3 or/and Al(i‐Bu)2H, was investigated. The polymerization of Bd with neodymium‐based catalysts yielded cis‐1,4 (97.2–98.9%) polybutadiene with controllable molecular weight (MW varying from 40 to 80 × 104 g mol?1). The effects of reaction temperature, reaction time, Nd(naph)3/Al(i‐Bu)3 molar ratio, and cocatalyst component on the catalytic activity and molecular weight of polymers were examined. It was found that there are two kinds of active sites in the catalyst system, which mainly influenced the MW and molecular weight distribution of polybutadiene. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1945–1949, 2004  相似文献   

19.
The ternary neodymium versatate (NdV3)‐based catalyst system, NdV3/SiCl4/Al(iso‐Bu)2H, for the stereospecific polymerization of 1,3‐butadiene (Bd) has been studied at a catalyst concentration of 0.11 mmol Nd per 100 g Bd. The effects of the concentration of SiCl4 following in situ activation, preformed at 20 °C in the presence and absence of isoprene and the substitution of Al(iso‐Bu)2H with AlEt3 as alkylating agent, were established and compared to the performance of NdV3‐based catalyst systems incorporating ethylaluminium sesquichloride (EASC), diethylaluminium chloride (DEAC) and t‐butyl chloride (t‐BuCl) as chloride sources. Comparable catalytic activity between the control catalysts based on EASC, DEAC and t‐BuCl and the studied NdV3/SiCl4/Al(iso‐Bu)2H system was achieved once the optimum concentration ratios of NdV3/SiCl4/Al(iso‐Bu)2H = 1:1:25 were applied in conjunction with preforming the catalyst components in the presence of isoprene for 72 h at 20 °C. Polybutadiene cis‐1,4 contents were consistently high (about 97 %) for all polymerizations. © 2000 Society of Chemical Industry  相似文献   

20.
Butadiene polymerization in the presence of mixed vanadium–titanium–aluminum catalytic systems containing various organoaluminum compounds (OACs) was investigated. The main factors influencing the activity and stereospecificity of the [VOCl3–TiCl4–OAC1]–(heating)–OAC2 catalysts [where OAC1 and OAC2 were Al(i‐Bu)3, Al(i‐Bu)2H, or Al(i‐Bu)2Cl] were considered. The kinetic parameters of the process were determined. The high activity and stereospecificity of the multicomponent systems probably accounted for the formation of polymerization active sites with both transition‐metal derivatives in their structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 211–217, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号