首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) 50/50 copolymer were prepared by spin coating on p-Si substrate. Thermal behavior of the film was observed by measuring the film thickness with ellipsometry as a function of the temperature and abrupt volume expansion was observed at 130–150 °C. Capacitance-voltage (C-V) and current-voltage (I-V) behavior of the aluminum/P(VDF-TrFE)/p-Si MIS (metal-insulator-semiconductor) structures were studied and dielectric constant of the P(VDF-TrFE) film was measured to be about 15.3 at optimum condition. No hysteresis was observed in the C-V curve for films as deposited and annealed (70–200 °C). Films annealed at temperatures higher than the volume expansion temperature showed substantial surface roughness due to the crystallization. Flat band voltage (VFB) of the MIS structure with as deposited films was about −0.3 V and increased up to −2.0 V with annealing. This suggested that positive charges were generated in the film. Electronic properties of the annealed P(VDF-TrFE) film at above melting temperature were degraded substantially with larger shift in flat band voltage, low dielectric constant and low breakdown voltage. Organic thin film transistor with pentacene active layer and P(VDF-TrFE) as a gate dielectric layer showed a mobility of 0.31 cm2/V·s and threshold voltage of −0.45 V.  相似文献   

2.
SrBi4Ti4O15 (SBTi) and Bi-excess and Sr-deficient SBTi (Sr-deficient SBTi, Sr0.8Bi4.13Ti4O15) thin films were deposited on Pt/Ti/SiO2/Si (100) substrates using a sol–gel method. Structure and electric properties were investigated systematically. These films were random oriented. The remnant polarization (2P r) of SBTi film was about 25.3 μC/cm2, which was larger than the reported value of SBTi thin film. The film with Sr-deficient and Bi-excess composition showed a very large remnant polarization of 36.6 μC/cm2. The capacitance–voltage (CV) characteristics of both the films showed normal ferroelectric behavior. The Curie temperatures of the same Sr-deficient and Bi-excess component ceramics sample increased slightly in comparison with that of SBTi. More importantly, the Sr-deficient and Bi-excess SBTi thin film showed high fatigue resistance against continuous switching up to 4.4 × 1010 cycles.  相似文献   

3.
Transparent ZnO thin film transistors (ZnO–TFTs) with different structures and dielectric layers were fabricated by rf magnetron sputtering. The PbTiO3, AlO x , SiN x and SiO x films were attempted to serve as the gate dielectric layers in the devices, respectively, and XRD was employed to investigate the crystal structure of ZnO films deposited on these dielectric layers. The optical properties of transparent TFTs were measured and revealed the average transmittance ranged from 60 to 80% in the visible part of the spectrum. Electrical measurement shows the properties of the ZnO–TFTs have great relations with the device structure. The bottom-gate TFTs have better behaviors than top-gate ones with the mobility, threshold voltage and the current on/off ratio of 18.4 cm2 V−1 s−1, −0.7 V and 104, respectively. The electrical difference of the devices may be due to different character of the interface between the channel and dielectric layers.  相似文献   

4.
The chemical vapor deposited (CVD) BP films on Si(100) (190 nm)/SiO x (370 nm)/Si(100) (625 μm) (SOI) and sapphire (R-plane) (600 μm) substrates were prepared by the thermal decomposition of the B2H6–PH3–H2 system in the temperature range of 800–1050 °C for the deposition time of 1.5 h. The BP films were epitaxially grown on the SOI substrate, but a two-step growth method, i.e., a buffer layer at lower temperature and sequent CVD process at 1000 °C for 1.5 h was effective for obtaining a smooth film on the sapphire substrate. The electrical conduction types and electrical properties of these films depended on the growth temperature, gases flow rates and substrates. The thermal conductivity of the film could be replaced by the substrate, so that the calculated thermoelectric figure-of-merit (Z) for the BP films on the SOI substrate was 10−4–10−3/K at 700–1000 K. Those on the sapphire substrate were 10−6–10−5/K for the direct growth and 10−5–10−4/K for the two-step growth at 700–900 K, indicating that the film on a sapphire by two-step growth would reduce the defect concentrations and promote the electrical conductivity.  相似文献   

5.
Bi3.15Nd0.85Ti3O12 (BNT) thin film with a thin LaNiO3 film as buffer layer was fabricated by sol–gel method on Pt/TiO2/SiO2/Si substrate. The BNT thin films have a perovskite phase with a dense microstructure. The P r and V c value are 25.5 μc/cm2 and 3.7 V, respectively under the applied voltage of 15 V. After the switching of 2 × 109 cycles, the P r value decreases to 86% of its pre-fatigue value. The leakage current density of the BNT thin films with LaNiO3 buffer layer were generally in the order of 10−8 to 10−6 A/cm2. The fatigue and leakage current properties were improved dramatically compared with the BNT film without a LaNiO3 buffer layer that we prepared before. The measured residual stress was tensile stress and its value was 176 MPa.  相似文献   

6.
In this study, we identically prepared the aniline green/p-Si organic–inorganic devices (total 27 diodes) formed by direct evaporation of an organic compound solution on to a p-Si semiconductor wafer, and then studied the current–voltage (IV) and capacitance–voltage (CV) characteristics of these devices. It was seen that the aniline green organic thin film on the p-Si substrate showed a good rectifying behavior. The barrier heights (BHs) and ideality factors of all devices were extracted from the electrical characteristics. Mean BH and ideality factor were calculated as 0.582 eV and 2.999, respectively from the IV characteristics. Additionally, the mean barrier height and mean acceptor doping concentration from CV measurements were calculated as (0.61 ± 0.10) eV and (5.54 ± 0.68) × 1014 cm−3, respectively. The discrepancy in the BH values obtained from IV and CV characteristics has been attributed to different nature of the measurements. This can also be due to the existence of the interfacial native oxide and the organic aniline green thin layer between the semiconductor and contacting top metal.  相似文献   

7.
A series of n-ZnO/p-Si thin film heterojunctions have been fabricated by a low cost sol–gel technique for different ZnO film thicknesses and the dark as well as photo current–voltage (I–V) characteristics have been investigated in details. The heterojunction with ZnO thickness of 0.46 μm shows the best diode characteristics in terms of rectification ratio, I F/I R = 5.7 × 103 at 5 V and reverse leakage current density, J R = 7.6 × 10−5 A cm−2 at −5 V. From the photo I–V curves and wavelength dependent photocurrent of the heterojunctions, it is found that the junction with 0.46 μm ZnO thickness shows the highest sensitivity towards both UV and visible lights.  相似文献   

8.
This article describes the development of a method to measure the normal-to-plane thermal conductivity of a very thin electrically insulating film on a substrate. In this method, a metal film, which is deposited on the thin insulating films, is Joule heated periodically, and the ac-temperature response at the center of the metal film surface is measured by a thermo-reflectance technique. The one-dimensional thermal conduction equation of the metal/film/substrate system was solved analytically, and a simple approximate equation was derived. The thermal conductivities of the thermally oxidized SiO2 films obtained in this study agreed with those of VAMAS TWA23 within ± 4%. In this study, an attempt was made to estimate the interfacial thermal resistance between the thermally oxidized SiO2 film and the silicon wafer. The difference between the apparent thermal resistances of the thermally oxidized SiO2 film with the gold film deposited by two different methods was examined. It was concluded that rf-sputtering produces a significant thermal resistance ((20 ± 4.5) × 10−9 m2·K·W−1) between the gold film and the thermally oxidized SiO2 film, but evaporation provides no significant interfacial thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1). The apparent interfacial thermal resistances between the thermally oxidized SiO2 film and the silicon wafer were found to scatter significantly (± 9 × 10−9 m2·K·W−1) around a very small thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1).  相似文献   

9.
Nanosized lithiated iron oxides with 10 and 50 wt.% SiO2 were prepared by a sol–gel method using 1 M Fe(NO3)3 · 9H2O and 1 M LiNO3 aqueous solutions in a stoichiometric ratio of 1:1 and colloidal silica. Dried xerogel was calcinated at 700 °C for 4 h in air. The X-ray data of samples synthesized using 10% and 50% SiO2 showed the presence of a mixture of two phases: α-LiFeO2 and Li1−x Fe5O8 (0 < x ≤ 0.1) for a sample containing 10% SiO2 and LiFe(SiO3)2 and Fe2O3 (h) for a sample with 50% SiO2. The electrochemical behaviour of the compounds was investigated galvanostatically within the 0.01–3.0 V range at a current density of 0.80 mA cm−2. The Li/Li x Fe y O z (10%) · SiO2 cell showed a high initial reversible capacity of 1,080 mA h g−1 and a capacity of 600 mA h g−1 at the 30th cycle. Accounting these results is the presence of a SiO2 phase which stabilizes the structure of the active mass on cycling. The mean charge voltage (1.8 V) and the discharge voltage of 1.0 V versus Li+ reference electrode as well as the high reversible capacity indicate that this material is suitable for use as anode in lithium-ion batteries.  相似文献   

10.
Funtionalized pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), field-effect transistors (FET) were made by thermal evaporation or solution deposition methods and the temperature dependent mobility was measured. The field-effect mobility (μFET) activation energy is gate voltage dependent. At low gate voltage, activated conduction is dominant with Ea ~ 0.27 eV, slightly smaller than the bulk value, and the activation energy decreases with increasing gate voltage. This is ascribed to traps in the film. A non-monotonic temperature dependence is observed at high gate voltage (VG < −30 V) with Ea ~ 60 - 170 meV at lower temperatures below the mobility maximum. Realization of simple logic gate circuits such as NOT (inverter), NOR, and NAND is demonstrated.  相似文献   

11.
GdBaFeNiO5+δ has been synthesized, and its crystal structure, thermal expansion, and electrical properties have been studied. It has a tetragonal structure (sp. gr. P4/mmm) with unit-cell parameters a = 0.3910(2) nm, c = 0.7582(6) nm, and V = 115.9(2) × 10−3 nm3 (δ = 0.53) and is a p-type semiconductor. The linear thermal expansion coefficient of GdBaFeNiO5+δ is 1.32 × 10−5, 1.72 × 10−5, and 1.37 × 10−5 K−1 in the temperature ranges 340–655, 655–870, and 870–1080 K, respectively.  相似文献   

12.
Ba0.6Sr0.4TiO3 films were fabricated by RF magnetron sputtering method. The X-ray diffraction (XRD) showed that the preferred orientation of films growing on platinum Si substrates can be tailored by sputtering pressure. The processing parameters such as sputtering pressure and substrate temperature were optimized to obtain a developed perovskite film with (110) preferred orientation. The polarization hysteresis loops and permittivity–voltage curves of the (110)-oriented film have been investigated,which demonstrated that the film is in ferroelectric phase at room temperature. Besides, it had excellent fatigue properties without polarization reduction after about 1010 switch cycles, and showed low leakage current (10−9–10−7 A/cm2) within an applied voltage of 5 V. Finally, the leakage current mechanism was studied.  相似文献   

13.
A series of highly (111) oriented Pb(Nb0.01Zr0.2Ti0.8)O3 (PNZT) thin films of variant thickness were successfully achieved on Pt/Ti/SiO2/Si substrate by a sol–gel route. By introducing Pb0.8Ca0.1La0.1Ti0.975O3 (PLCT) layer between the PNZT film and Pt electrode, the PNZT film could be crystallized at as low as 500 °C. When a maximum applied voltage is 3 V, it was found that the PNZT film with PLCT seed layer possessed higher remnant polarization (22 μC/cm2) as film thickness was scaled down to 50 nm. It was also found that enhanced pyroelectric properties could be observed in 50-nm thickness PNZT thin film due to its relatively low dielectric constant. The results demonstrated that the film thickness could be scaled down for low voltage operations using lattice matched interface between PNZT film and PLCT seed layer on Pt/Ti/SiO2/Si substrate, and this interface optimization is the key technology for synthesizing thin PNZT films at low temperature with good insulating and electric properties.  相似文献   

14.
Bi3.25La0.75Ti2.94V0.06O12 (BLTV) thin film was fabricated on the Pt/TiO2/SiO2/p-Si(100) substrate using sol–gel method. The microstructures and electrical properties of the film after cosubstitution of La and V were investigated. The BLTV thin film shows less highly c-axis oriented than the BIT thin film mainly with fine rod-like grains. Raman spectroscopy shows that TiO6 (or VO6) symmetry decreases and Ti–O (or V–O) hybridization increases for V substitution. The P r and E c values of the BLTV thin film are 26.3 μC/cm2 and 98 kV/cm at a voltage of 12 V, respectively. The thin film also exhibits a very strong fatigue endurance up to 1010 cycles and low leakage current density. The excellent properties of the BLTV thin film are attributed to the effective decrease or suppression of oxygen vacancies after La and V cosubstitution in the thin film.  相似文献   

15.
Silicon stabilized tricalcium phosphate (Si-TCP) is formed, among other phases, as a result of sintering hydroxyapatite (HA) in the presence of silica (SiO2) at >800°C. Calcium phosphate films sintered at 1000°C on quartz substrates are examined with and without additional SiO2 added to the starting precipitate. Data from transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) separate the undoped film morphology into a surface layer with a monoclinic crystal structure P21/a characteristic of α or Si-tricalcium phosphate and grain size in the range 100–1000 nm and a substrate layer with a crystal structure which is predominantly apatitic P63/m and grain size in the range 30–100 nm. The silicon content is greatest in the substrate layer. The addition of SiO2 to the film material during fabrication induces a more uniform grain size of 10–110 nm and a higher Si content. The structural and phase evolution of these films suggests the nucleation of α-TCP by the local formation of Si-TCP at a SiO2-hydroxyapatite interface. The results are consistent with X-ray diffraction studies and are explained by a model of nucleation and growth developed for bulk powders.  相似文献   

16.
Herein we discuss our approach to realizing all electrical spin injection and detection in GaAs. We propose a lateral geometry, with two ferromagnetic electrodes crossing an n-doped GaAs channel. AlO x tunnel barriers are to be used in order to overcome the impedance mismatch and different widths of the two electrodes ensure different coercive fields. We present a detailed theoretical analysis of the expected magnetoresistance. Differences in behavior between lateral and vertical devices, the influence of the applied bias (electric field), and opportunities offered by different measurement geometries were explored. The MBE grown wafer consisted of 100 nm Al0.3Ga0.7As, acting as confinement layer, 100 nm n-doped (4 × l017 cm−3) GaAs, 3 nm n++ GaAs (1021 cm−3), to suppress Schottky barrier formation, and 1.5 nm Al. The Al was oxidized naturally in order to obtain tunnel barriers. By making use of in-situ shadow masks, a 0.1 mm wide channel is defined by covering the rest of the sample by insulating SiO2, followed by deposition of Ta bonding pads. Finally, 500 and 1000 nm wide CoFe electrodes crossing the GaAs channel are obtained by e-beam lithography and sputtering. We show that the IV characteristics of the CoFe/AlO x /GaAs interface are consistent with tunneling as the main injection mechanism. However, the resistance-area (5 × 109 Ω μm2) of our barriers is too high compared to the GaAs conductance (50 Ω square resistance) leading to a strong suppression of magnetoresistance. Further experiments are in progress toward optimizing barrier and channel impedance matching.  相似文献   

17.
Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10−6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly transparent in the visible region. It is also observed that the film has low reflectance in the ultra-violet region. The optical band gap of the film is determined and is found to decrease with the increase of film thickness. The values of absorption coefficient, extinction coefficient, refractive index, dielectric constant, phase angle and loss angle have been calculated from the optical measurements. The X-ray diffraction of the film showed that the film is crystalline in nature. The crystallite size of CeO2 films have been evaluated and found to be small. The experimental d-values of the film agreed closely with the standard values.  相似文献   

18.
SiBx and SiB6 plates were prepared by chemical vapour deposition (CVD) using SiCl4, B2H6 and H2 gases under the conditions of deposition temperatures (T dep) from 1323–1773 K, total gas pressures (P tot) from 4–40 kPa and B/Si source gas ratio (m B/Si=2B2H6/SiCl4) from 0.2–2.8. The effects of CVD conditions on the morphology, structure and composition of the deposits were examined. High-purity and high-density SiBx and SiB6 plates about 1 mm thick were obtained at the deposition rates of 71 and 47 nm s−1, respectively. The lattice parameter, composition and density of CVD SiBx plates were dependent on their non-stoichiometry. The lattice parameter,a, was 0.6325 nm, butc ranged from 1.262–1.271 nm.The B/Si atomic ratio ranged from 3.1–5.0, and the density ranged from 2.39–2.45×103 kg m−3. The CVD SiB6 plates showed constant values of lattice parameters (a=1.444 nm,b=1.828 nm,c=0.9915 nm), composition (B/Si=6.0) and density (2.42×103 kg m−3), independent of CVD conditions.  相似文献   

19.
Sandwich structures of Carbazole thin films have been prepared by using vacuum deposition technique. The plot of current density versus voltage (J–V characteristics) shows two distinct regions. In the lower voltage region ohmic conduction and in the higher voltage region space charge limited conduction (SCLC) is observed. Number of states in the valence band (Nv) is calculated from the temperature dependence of J in the ohmic region. From the temperature dependence of J in the SCLC region trap density (Nt) and activation energy are determined. The values of Nv and Nt are in the order 1023 m−3 and 1027 m−3 respectively. The value of activation energy is nearly equal to 0.1 eV and that of the effective mobility is 4.5 × 10−7 cm2 V−1 S−1. Schottky diodes are fabricated using Aluminium (Al) as Schottky contact. It is observed that gold (Au) is more suitable for ohmic contact compared to silver (Ag). From a semi logarithmic plot of J versus V, the barrier height (ϕb), diode ideality factor (n) and saturation current density (J0) are determined. The value of n increases and ϕb decreases on annealing.  相似文献   

20.
Gold (Au) films were formed by sintering of Au nanoparticles (NPs) under gas flows of air, oxygen (O2), nitrogen (N2), or N2 bubbled through formic acid (FA/N2). The microstructure changes of the Au nanoparticulate films were studied when different atmospheres were applied. The Au film sintered under FA/N2 showed the progressive agglomeration and grain growth with porosity in the film, while the film sintered under N2 had NPs without participating grain growth. A necking between NPs was observed in the film, however, unnecked NPs were still found. The Au film sintered under O2 atmosphere showed the NPs agglomeration with various sizes up to 50 nm. X-ray characteristic peaks of the (111)-preferred orientation were observed in all samples. All samples showed N–H stretching at 3200–3300 cm−1 regardless of sintering atmosphere. Hydrocarbon chains (C–H) at 2850–3000 cm−1 were detected in the film sintered under N2. For the Au film sintered under O2, C–H stretching at 2850–3000 cm−1, C–H deformation at 1350–1470 cm−1, and C–O stretching at 1200–1300 cm−1 were observed. C–O stretching at 1600–1700 cm−1 was observed for the film sintered under FA/N2 atmosphere. The electrical resistance of the film was related with microstructures and organic residual materials left in the film. Even though either porosity or carbon residues were observed in the film, the sintering of NPs in FA/N2 or N2 showed the sheet resistance comparable to that of electroplated one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号