首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.  相似文献   

2.
ANAMMOX工艺在生活污水深度处理中的应用研究   总被引:4,自引:0,他引:4  
随着水环境质量的恶化,高能低耗的污水深度处理技术成为当前研究热点,尤其是对于低C/N比的城市生活污水脱氮技术的研究。试验以城市生活污水的二级出水为研究对象,采用ANAMMOX下向流生物滤池,当二级出水NH3-N=15-35mg/L,CODCr=25-45mg/L,TOC=9-12mg/L,水温=25-28℃时,ANAMMOX下向流生物滤池脱氨率达80%-100%,不仅适用于处理高氨废水,也可用于城市生活污水深度处理中。试验发现pH可以用来指示ANAMMOX反应的进行,同时也可以用来指示ANAMMOX反应进程的快慢。试验中还发现,厌氧氨氧化反应速率与NO2--N含量有关,原水中NO2--N含量的增多有利于ANAMMOX工艺处理效果。  相似文献   

3.
To evaluate control parameters for nitrous oxide (N2O) emissions in the swine wastewater treatment process, the N2O emission was compared in the activated sludge from SBRs acclimated in different carbon/nitrogen (C/N) ratios. N2O emission from a denitrification phase was very strongly dependent on C/N ratio of swine wastewater, and the total N2O emission in the operating condition of BOD5/TN ratio of 2.6 was approximately 270 times greater than that in BOD5/TN ratio of 4.5. However, the effect of C/N ratio on N2O emission amount from nitrification was not significant in an oxic phase study. It is considered that stabilization of the C/N ratio through optimal solid-liquid separation of slurry or use of an external carbon source is indispensable for effective N2O emission control from nitrogen removal process of swine wastewater.  相似文献   

4.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

5.
ABR工艺在处理垃圾渗滤液中具有其他厌氧生物反应器所达不到的优点。尤其是对B/C低、氨氮浓度高、COD浓度高的废水处理,通过调节回流比、HRT、碱度等参数后,可以取得很好的处理效果。在本次实验中,HRT控制在18h后明显提高的垃圾渗滤液的可生化性及C/N,使ABR出水CODcr去除率达到75%,C/N为6.72,对后续好氧反应起到了重要作用。在调控一定回流比后,为提供厌氧氨氧化所需的电子受体NO-3和NO-2实现脱氮。反应器在经过120d的培养驯化,氨氮进水为460mg/L,ABR对氨氮的去除率稳定在80%。不同格室的厌氧颗粒污泥都得到很好的驯化并在其合适的环境中发挥各自的功能。  相似文献   

6.
The aim of this study was to examine the relationship between ammonia oxidizing bacterial populations and biological nitrogen removal in a small on-site domestic wastewater treatment system "Johkasou". The population dynamics of ammonia oxidizing bacteria (AOB) in six full-scale advanced Johkasous was surveyed using real-time PCR assay over a period of one year. These Johkasous were selected to compare the AOB populations in different treatment performance. When the effluent NH4-N concentration was higher than 2 mg L(-1), it was difficult to meet the effluent standard of advanced Johkasous (T-N 10 mg L(-1)). In contrast, the nitrogen removal efficiency was hardly affected by nitrite oxidation and denitrification in these systems. In other words, ammonia oxidation was a rate-limiting step. Furthermore, we focused on the relationship between NH4-N loading per AOB cell and nitrogen removal. Real time PCR monitoring results demonstrated that it is important to regulate NH4-N loading per AOB cell below 210 pg cell(-1) day(-1) to meet the effluent standard of advanced Johkasou. It is considered that NH4-N loading per AOB cell is a useful parameter for determining suitable nitrogen loading and small decentralized system design.  相似文献   

7.
Nitrogen removal in piggery waste was investigated with the combined SHARON-ANAMMOX process. The piggery waste was characterized as strong nitrogenous wastewater with very low C/N ratio. For the preceding SHARON reactor, ammonium nitrogen loading and conversion rates were 0.97 kg NH4-N/m3 reactor/day and 0.73 kg NH4-N/m3 reactor/day, respectively. Alkalinity consumption for ammonium conversion was 8.5 gr bicarbonate utilized per gram ammonium nitrogen converted to NO2-N or NO3-N at steady-states operation. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. Nitrogen loading and conversion rates were 1.36 kg soluble N/m3 reactor/day and 0.72 kg soluble N/m3 reactor/day, respectively. The average NO2-N/NH4-N removal ratio by ANAMMOX reaction was 2.13. It has been observed that Candidatus "Kuenenia stuttgartiensis" were dominated in the ANAMMOX reactor based on FISH analysis.  相似文献   

8.
Liu Y  Li Y  Lv Y 《Water science and technology》2012,65(11):2084-2090
This study investigated some factors affecting ammonium removal and nitrite accumulation by Alcaligenes faecalis C16, which was isolated from the activated sludge of a coking wastewater treatment plant. Nitrite was produced from ammonium only in the presence of citrate, acetate, meat extract, peptone or ethanol. The highest amount of nitrite was found with citrate as carbon source. A. faecalis C16 could not use glucose, fructose, sucrose and methanol. Under the optimum conditions of initial pH 6.0, C/N 14, 30 °C and 120 rpm, a maximum nitrite accumulation of 28.29 mg/L NO(2)(-)-N was achieved when the organism grew with citrate in four days. Nitrite accumulation increased with the increase of NH(4)(+)-N. Furthermore, A. faecalis C16 was shown to have phenol-degrading capacity during ammonium removal. Metabolism of phenol resulted in acidification of the media, which is not favorable for nitrification, whereas many other carbon sources made the medium more alkaline. However, no inhibitory effect by phenol was observed when phenol and acetate were used as mixed carbon source at different phenol/sodium acetate (P/S) ratios and their pH values were all controlled above 9.2 or P/S ratios below 5:5. These results suggested that A. faecalis C16 has some potential application in industrial wastewater treatment systems.  相似文献   

9.
For economic and efficient nitrogen removal from wastewater treatment plants via simultaneous nitrification and denitrification the nitrification process should stop at the level of nitrite such that nitrite rather than nitrate becomes the substrate for denitrification. This study aims to contribute to the understanding of the conditions that are necessary to improve nitrite reduction over nitrite oxidation. Laboratory sequencing batch reactors (SBRs) were operated with synthetic wastewater containing acetate as COD and ammonium as the nitrogen source. Computer controlled operation of the reactors allowed reproducible simultaneous nitrification and denitrification (SND). The oxygen supply was kept precisely at a low level of 0.5 mgL(-1) and bacterial PHB was the only electron donor available for denitrification. During SND little nitrite or nitrate accumulated (< 20% total N), indicating that the reducing processes were almost as fast as the production of nitrite and nitrate from nitrification. Nitrite spiking tests were performed to investigate the fate of nitrite under different oxidation (0.1-1.5 mgL(-1) of dissolved oxygen) and reduction conditions. High levels of reducing power were provided by allowing the cells to build up to 2.5 mM of PHB. Nitrite added was preferentially oxidised to nitrate rather than reduced even when dissolved oxygen was low and reducing power (PHB) was excessively high. However, the presence of ammonium enabled significant reduction of nitrite under low oxygen conditions. This is consistent with previous observations in SBR where aerobic nitrite and nitrate reduction occurred only as long as ammonium was present. As soon as ammonium was depleted, the rate of denitrification decreased significantly. The significance of the observed strongly stimulating effect of ammonium on nitrite reduction under SND conditions is discussed and potential consequences for SBR operation are suggested.  相似文献   

10.
不同氮源对黄花鸢尾净化富营养化水体的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用水生植物床系统研究了不同氮源(硝酸盐、亚硝酸盐、铵盐)对黄花鸢尾(Iris pseudoacorus)去除水体氮磷营养盐效率的影响,同时对植物的生长量、水体中叶绿素a含量、黄花鸢尾对氮磷的吸收利用以及氮循环细菌的分布和氧化亚氮的通量进行了综合研究。结果表明:黄花鸢尾对硝酸盐氮具有优先选择性,而对氨氮的去除效果较差。从植物总氮、总磷吸收量来看,3种氮源中硝酸盐氮>亚硝酸盐氮>氨氮;从氮循环菌分布和N2O释放量来看,硝酸盐氮>氨氮>亚硝酸盐氮。一定范围内,植物对营养盐的吸收随营养盐浓度增加而增加,但水体中营养盐浓度过高则会抑制植物的生长,浓度为80 mg/L的硝酸盐氮,亚硝酸盐氮和氨氮都对黄花鸢尾生长有抑制作用,尤其是高浓度氨氮溶液中,植物的湿重明显减少,因此,黄花鸢尾更适宜治理硝酸盐污染的水体。  相似文献   

11.
Integrated presentation of total emissions on catchment scale is prerequisite for many tasks in integrated management of point and diffuse sources of pollution. This paper will focus on emissions of nutrients from municipal point sources. Based on calculations of discharges of N, P from households into wastewater and on the detailed evaluation of data from 76 municipal wastewater treatments plants, this paper presents ranges of specific loads of inhabitants and population equivalents in the raw wastewater. In addition data of these treatment plants have been evaluated in respect of the treatment efficiency for nitrogen and phosphorus (average reduction rates) dependent on the design characteristic (with or without nitrification, denitrification or enhanced phosphorus removal). The results of the investigation show that the specific N and P loads from households in Austria lie within the range 1.6-2.0 g P/(inhabitant.d) and 11- 13 g N/(inhabitant.d). The specific contribution of industries to municipal wastewater varies between 0.3 and 2.0 gP/(pe.d) and 0 and 13 g N/(pe.d) with average values of 1.3 g P/(pe.d) and 6.5 g N/(population equivalent (pe)/d). As average values for municipal wastewater (contributions from household and industry) this leads to specific influent loads of 1.5 g P/(pe.d) and 8.8 g N/(pe.d). Average treatment efficiencies of treatment plants are for instance 50% nitrogen removal in treatment plants with nitrification and 80% in treatment plants with nitrification/denitrification. For phosphorus a removal of about 85% can be expected where the treatment plant was designed for enhanced phosphorus removal. Finally a method for load estimations based on standard values as mentioned above was tested for the estimation of emission from municipal point sources of selected regions.  相似文献   

12.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

13.
对某A2/O工艺城市污水处理厂施工建造和运营维护阶段所造成的环境影响进行生命周期评价,并以绿色税收为参考指标概算各环境影响指标造成的经济负担,同时对采用不同污水处理方式的污水处理厂的生命周期评价结果进行比较。结果表明:A2/O工艺城市污水处理厂生命周期内造成的环境影响主要来自运营维护阶段的能量消耗,对水体富营养化的影响较大;相对于某湿地污水处理系统,A2/O工艺城市污水处理厂对非生物资源消耗较大,但在大气酸化、光化学氧化以及全球变暖等方面的影响较小;相对于五阶段Bardenpho工艺,A2/O工艺对水体富营养化具有较大影响,但在非生物资源消耗、全球变暖、光化学氧化、大气酸化等方面影响较小。  相似文献   

14.
In order to develop a new type of anaerobic digestion process equipped with a nitrogen removal function, denitrification of nitrate nitrogen (NO3-N) in anaerobic acidogenesis of organic fraction of municipal waste (OFMSW) was investigated by two semi-continuous reactors. Reactor 1 and Reactor 2 were fed by 3% and 7% of solids concentration of synthetic garbage, respectively. Generation of nitrogen gas (N2) and ammonium nitrogen (NH4-N) was simultaneously observed in the low load of nitrate (NO3-N) (below 0.68 g NO3-N/L). In Reactor 1, ammonium nitrogen generation decreased as the addition of nitrate increased. Finally, the increase of the addition of nitrate resulted in the increase of acetic acid production.  相似文献   

15.
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.  相似文献   

16.
The application of reversed A2/O process in practice in China is mainly discussed in this paper. As a new process on nitrogen and phosphorus removal, principle and technical features of reversed A2/O process are also summarized. The application in rebuilt wastewater treatment plant shows that reversed A2/O process not only has merits on high nitrogen and phosphorus removal efficiency, but also has merits on energy saving. The application in newly-build wastewater treatment plant shows that infrastructure and equipment investment of reversed A2/O process economized 15% and 10% respectively, compared to conventional A2/O process. The practical application shows that reversed A2/O process is a new nitrogen and phosphorus removal process, which is suitable for China's national conditions.  相似文献   

17.
Factors affecting nitrogen removal by nitritation/denitritation.   总被引:4,自引:0,他引:4  
Nitrogen removal from wastewater with high nitrogen concentration and low COD/N ratio via nitrite is advantageous. The specific character of the sludge liquor enables the application of such a method. The factors affecting process efficiency were studied. From the factors followed pH, NH4+/NH3 and NO2-/HNO2 concentration and distribution seem to be most important, using sequencing batch reactor technology and treating wastewater with high NH4+ concentration (above 1 g/l). The efficient oxidation of N-NH4+ to nitrite was achieved at a minimal nitrate production. Primary sludge was used as an internal source of substrate for the denitritation because of the organic substrate deficiency of the sludge liquor. The denitritation can be controlled by dosing of the primary sludge and can be complete. There are two operational alternatives of sludge liquor pretreatment: without pH control--lower operational costs and N-removal up to 65% and with pH control--higher operational costs and N-removal close to complete.  相似文献   

18.
一株青霉菌异养硝化和好氧反硝化特性的研究   总被引:1,自引:0,他引:1  
从活性污泥中分离出一株青霉菌,培养特性为中温好氧性。初步研究表明:该菌株可利用多种含碳化合物及含氮化合物作为唯一碳源和氮源,并将含氮化合物转化为亚硝态氮,在好氧条件下,能还原硝酸盐,具有同步硝化和反硝化作用。在实验条件下,以铵盐作为反应底物,培养24 h后,溶液中ρ(NO2-)为0.35μg/mL,对硝酸盐有较强的还原能力,24~72 h培养后,溶液中的ρ(NO2-)为3~5μg/mL;在pH=5~11,48 h后对人工合成污水的氨氮去除率可达90%~97.7%。  相似文献   

19.
The denitrification process, namely the reduction of nitrate (NO3-) to nitrogen gas (N2), often cannot be simply modelled as a single step process. For a more complete and comprehensive model the intermediates, particularly nitrite (NO2-) and nitrous oxide (N2O), need to be investigated. This paper demonstrates the integration of titrimetric measurements and off-gas analysis with on-line nitrite plus nitrate (NOx-) biosensors, highlighting the necessity of measuring process intermediates with high time-scale resolution to study and understand the kinetics of denitrification. Investigation of activated sludge from a full-scale treatment plant showed a significant accumulation of NO2-, which appeared to impact on the overall denitrification rate measured as NOx- reduction or N2 production. A different sludge obtained from a lab-scale bioreactor produced N2O instead of N2 as the end product of denitrification. The two examples both illustrate the complexity of denitrification and stress the need for the more versatile and detailed measurement procedures, as presented in this paper.  相似文献   

20.
The sustainable anaerobic nitrogen removal and microbial granulation were investigated by using a laboratory anaerobic granular sludge bed reactor, treating synthetic (inorganic and organic) wastewater and piggery waste. From inorganic synthetic wastewater, lithoautotrophic ammonium oxidation to nitrite/nitrate was observed by an addition of hydroxylamine. Also, the results revealed that the Anammox intermediates (particularly, hydrazine) contents in the substrate would be one of the important parameters for success of the anaerobic nitrogen removal process. The results from organic synthetic wastewater show that if the Anammox organism were not great enough in the startup of the process, denitritation and anaerobic ammonification would be a process prior to the Anammox reaction. The anaerobic ammonium removal from the piggery waste was performed successfully, probably due to the Anammox intermediates contained in the substrate. This reactor shows a complex performance including the Anammox reaction and HAP crystallization, as well as having partial denitritation occurring simultaneously. From the activity test, the maximum specific N conversion rate was 0.1 g NH4-N/g VSS/day (0.77 g T-N/g VSS/day), indicating that potential denitritation is quite high. The NO2-N/NH4-N ratio to Anammox is 1.17. The colour of the biomass treating the piggery waste changed from black to dark red. It was also observed that the red-colored granular sludge had a diameter of 1-2 mm. The settleability assessment of the granular sludge revealed that the granular sludge had a good settleability even though it was worse than that of seed granular sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号