首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quenched and tempered 5.5Ni steel was embrittled by hydrogen charging and broken in air at room temperature. The primary fracture mode was transgranular quasicleavage. The quasicleavage facets were studied by scanning electron fractography and by transmission electron microscopy of profile fractographic specimens. The latter were prepared by plating the fracture surface with nickel and thinning so that the fracture surface was contained within the region of the specimen that was transparent to the electron beam. The fracture surface generally followed martensite lath boundaries. In addition, interlath microcracks were frequently found in the material immediately beneath the fracture surface. These results suggest that transgranular hydrogen embrittlement in this steel is primarily an interlath cracking phenomenon. Since the lath boundary planes tend to lie in {110}, the results also explain the prevalence of {110} quasicleavage in the embrittled specimens, which contrasts with the {100} cleavage found in uncharged specimens broken below the ductile-to-brittle transition temperature.  相似文献   

2.
A study on the phenomenon of tempered martensite embrittlement (TME) has been made in experimental Fe-Mo-C and Fe-W-C steel. Charpy impact testing was conducted to evaluate the impact toughness, sensitive to TME. Retained austenite was observed by an analytical transmission electron microscopy in both steels. Both steels represented TME. TME was correlated with the formation of the interlath cementite, resulting from the decomposition of interlath retained austenite. TME occurred in a limited range of test temperatures where the interlath cementite could act as a source of embrittling cracks. Therefore, both the interlath cementite resulting from the decomposition of the interlath retained austenite, and the level of matrix toughness, enabling the interlath cementite to act as an effective embrittler, are necessary to produce TME.  相似文献   

3.
Mechanisms of tempered martensite embrittlement in low alloy steels   总被引:1,自引:0,他引:1  
An investigation into the mechanisms of tempered martensite embrittlement (TME), also know as “500°F” or “350°C” or one-step temper embrittlement, has been made in commercial, ultra-high strength 4340 and Si-modified 4340 (300-M) alloy steels, with particular focus given to the role of interlath films of retained austenite. Studies were performed on the variation of i) strength and toughness, and ii) the morphology, volume fraction and thermal and mechanical stability of retained austenite, as a function of tempering temperature, following oil-quenching, isothermal holding, and continuous air cooling from the austenitizing temperature. TME was observed as a decrease in bothK Ic and Charpy V-notch impact energy after tempering around 300°C in 4340 and 425°C in 300-M, where the mechanisms of fracture were either interlath cleavage or largely transgranular cleavage. The embrittlement was found to be concurrent with the interlath precipitation of cementite during temperingand the consequent mechanical instability of interlath films of retained austenite during subsequent loading. The role of silicon in 300-M was seen to retard these processes and hence retard TME to higher tempering temperatures than for 4340. The magnitude of the embrittlement was found to be significantly greater in microstructures containing increasing volume fractions of retained austenite. Specifically, in 300-M the decrease inK Ic, due to TME, was a 5 MPa√m in oil quenched structures with less than 4 pct austenite, compared to a massive decrease of 70 MPa√m in slowly (air) cooled structures containing 25 pct austenite. A complete mechanism of tempered martensite embrittlement is proposed involving i) precipitation of interlath cementite due to partial thermal decomposition of interlath films of retained austenite, and ii) subsequent deformation-induced transformation on loading of remaining interlath austenite, destabilized by carbon depletion from carbide precipitation. The deterioration in toughness, associated with TME, is therefore ascribed to the embrittling effect of i) interlath cementite precipitates and ii) an interlath layer of mechanically-transformed austenite,i.e., untempered martensite. The presence of residual impurity elements in prior austenite grain boundaries, having segregated there during austenitization, may accentuate this process by providing an alternative weak path for fracture. The relative importance of these effects is discussed. Formerly with the Lawrence Berkeley Laboratory, University of California.  相似文献   

4.
Ferritic Fe-Ni steels that are intended for service at low temperature are usually given an intercritical temper as the final step in their heat treatment. The temper dramatically decreases the ductile-brittle transition temperature, TB. Its metallurgical effect is to temper the lath martensite matrix and precipitate a distribution of fine austenite particles along the lath boundaries. Prior research suggests that the low value of TB is a consequence of the small effective grain size of the ferrite-austenite composite. The present research was done to test this suggestion against the counter-hypothesis that the low TB is due to the inherent toughness of the constituent phases. The approximate compositions of the tempered martensite and precipitated austenite phases in the composite microstructure of tempered 5.5Ni steel are known from STEM analysis. Bulk alloys were cast with these two compositions. Their mechanical properties were measured after heat treatment and compared to those of the parent alloy in the toughened ‘QLT’ condition. Both of the constituent phases are brittle at low temperature. It follows that the outstanding low-temperature toughness of the tempered alloy cannot be attributed to the inherent properties of the constituent phases, but must reflect their cooperative behavior in the composite microstructure. The austenitic bulk alloy was also used to investigate the stability of the precipitated austenite phase. The thermomechanical stability of the bulk alloy approximates that of the precipitated austenite within tempered 5.5Ni steel. This result is consistent with previous data, and supports the conclusion that the stability of the precipitated austenite is determined mainly by its chemical composition.  相似文献   

5.
An experimental gas-metal arc (GMA) weldment of HSLA-100 steel fabricated with an ultralowcarbon (ULC) consumable of interest for United States Navy applications, designated “ARC100,” was studied to determine the relationships among the microstructure, the solute redistributions at various positions across the weldment, and the local properties (microhardness). These relationships were investigated by a variety of techniques, including microhardness mapping, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) (including compositional X-ray mapping), and parallel electron energy-loss spectroscopy (PEELS). The microconstituents observed in this weld include lath ferrite, degenerate ferrite, lath martensite, retained austenite, and oxide inclusions; no carbides or other solid-state precipitates are present within the weld metal. Microhardness mapping indicates an undermatched weld metal (lower hardness as compared to the base plate) in which the hardest regions are in the first and last top beads, the root passes, and between highly ferritic soft bands associated with the outer portion of each weld bead’s heat-affected zone (HAZ) (within the fusion zone). The majority of the gradient in the substitutional alloying elements (Ni, Cu, Mn, and Cr) occurs within a region of less than about 0.5 mm of the fusion boundary, but the composition still changes even well into the fusion zone. Appreciable segregation of Ni and Cu to solidification cell boundaries occurs, and there is appreciable enrichment of C, Ni, Cu, and Mn in thin films of interlath retained austenite. This ULC weld metal is softer than the base plate due to the preponderance of lath ferrite rather than lath martensite, even at the high cooling rates experienced in this low-heat-input weld. Alternatively, the strength of the weld metal is due to the presence of at least some untempered lath martensite and the fact that the majority of the ferrite is lath ferrite and not polygonal ferrite. The interlath retained austenite might enhance toughness, but might also serve as a source of hydrogen in solution, which could potentially contribute to hydrogen-assisted cracking.  相似文献   

6.
The evolution law of precipitated alloy carbides and reverted austenite in a high Co-Ni secondary hardening ultra-high strength 25Co15Ni11Cr2MoE steel tempered at 300??~ 660?? after quenched has been studied by means of transmission electron microscopy (TEM) and X ray diffraction (XRD) in this paper. The results show that the precipitate order of alloy carbides with the increasing of tempering temperature from 300?? to 600?? in experimental steel is: dispersed ??-carbides?? lamellar alloy cementites?? dispersed M2C carbides?? coarse M23C6 carbides. When the experimental steel tempering at 495??, fine M2C carbides precipitated on the lath martensite matrix. Meanwhile, coarse lamellar alloy cementites that precipitated during the early tempering stage has all dissolved, and reverted austenite precipitated at the boundaries of lath martensite and grows up into thin-film sharp along the lath boundaries. When the tempering temperature rose to 530??, the content of reverted austenite continues to increase, but the morphology of reverted austenite changed from thin-film to strip or block. When the tempering temperature rose to 530??, the content of reverted austenite in the steel reaches maximum value.  相似文献   

7.

Hydrogen diffusion and embrittlement in an austenitic steel with 0.2 wt pct carbon and 0.2 wt pct nitrogen were investigated. The simultaneous alloying of both carbon and nitrogen did not reduce hydrogen diffusivity more than single alloying of nitrogen due to the interaction between carbon and nitrogen. During tensile straining, a low density of cracks initiated at the grain boundaries at an early deformation stage. The cracks propagated either along the grain boundaries and twin boundaries, or the paths where ε martensite was concentrated, which resulted in mixed intergranular and transgranular fracture modes. Still, the resistance to hydrogen embrittlement improved in comparison with the single alloying of either carbon or nitrogen due to enhanced austenite stability.

  相似文献   

8.
Retained austenite and tempered martensite embrittlement   总被引:4,自引:0,他引:4  
The problems of detecting the distribution of small amounts (5 pct or less) of retained austenite films around the martensite in quenched and tempered experimental medium carbon Fe/c/x steels are discussed and electron optical methods of analysis are emphasized. These retained austenite films if stable seem to be beneficial to fracture toughness. It has been found that thermal instability of retained austenite on tempering produces an embrittlement due to its decomposition to interlath films of M3C carbides. The fractures are thus intergranular with respect to martensite but transgranular with respect to the prior austenite. The temperature at which this occurs depends upon alloy content. The effect is not found in Fe/Mo/C for which no retained austenite is detected after quenching, but is present in all other alloys investigated.  相似文献   

9.
利用金相显微镜、扫描电镜和透射电镜等研究了1Cr12Ni3Mo2VN耐热钢的回火工艺,结果指出试验钢产生第一类回火脆性的主要原因是马氏体板条界存在聚集长大的Fe_3C及M_3C脆性相,导致冲击韧性显著下降。Mo_2C与基体处于共格状态,使基体周围晶格产生很大的静畸变是次要原因;产生第二类回火脆性的原因,一是由于碳化物M_(23)C_6沿原奥氏体晶界和马氏体板条界迅速聚集并粗化,二是板条间残余奥氏体膜因碳贫化而发生热失稳分解。结合技术协议要求,为了有利于组织的稳定性,本试验钢的最佳回火工艺为580℃×2h空冷。  相似文献   

10.
The isothermal and nonisothermal tempering of martensite in dual-phase (DP) steels was investigated mainly by analytical transmission electron microscopy, and the effect on softening behavior was studied. The isothermal tempering resulted in coarsening and spheroidization of cementite and complete recovery of laths. However, nonisothermal tempering manifested fine quasi-spherical intralath and platelike interlath cementite, decomposition of retained austenite, and partial recovery of laths. The distinct characteristic of nonisothermal tempering was primarily attributed to the synergistic effect of delay in cementite precipitation and insufficient time for diffusion of carbon due to rapid heating that delays the third stage of tempering. The finer size and platelike morphology of cementite coupled with partial recovery of lath resulted in reduced softening in nonisothermal tempering compared to severe softening in isothermal tempering due to large spheroidized cementite and complete recovery of lath substructure. The substitutional content of precipitated cementite in nonisothermal tempering was correlated to the richness of particular steel chemistry. Softening resistance during nonisothermal tempering was related to DP steel chemistry, i.e., Cr and Mn content. Fine cementite and less decomposed martensite in rich chemistry confer high resistance to softening compared to leaner chemistries, which indicated severe decomposition of martensite with coarser cementite.  相似文献   

11.
The reverse transformation behavior upon heating to intercritical temperature was studied in Fe-0.21C-2.2Mn-1.5Si (wt pct) alloy with three initial microstructures. One is the cold-rolled (CR) structure and two others are martensite having different fractions of retained austenite. The CR structure exhibits slower reverse transformation kinetics than martensite due to the lesser population of potent nucleation sites and coarse cementite particles. The film type of retained austenite at the martensite lath boundary contributes to the earlier start of the reverse transformation, because it can proceed as the growth of pre-existing retained austenite, which makes the nucleation process less critical. Besides, the growth of interlath austenite plays an essential role in the evolution of fine lath-type reverse-transformed microstructure, which was difficult to obtain from similar initial microstructures of martensite having negligible fraction of interlath austenite.  相似文献   

12.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Some in situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C films upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The situation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which occurs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can occur in the same steels, depending on the tempering conditions.  相似文献   

13.
A ferrite-bainite-martensite (F-B-M) microstructure was produced in a medium-carbon microalloyed (MA) steel through two routes, namely, low-temperature finish forging and rolling, followed by a two-step cooling (TSC) and annealing. Transmission electron microscopy (TEM) was employed to study the microstructural evolution in control forged and rolled material after TSC followed by annealing (TSCA). A TEM investigation was also carried out on samples low-cycle fatigue (LCF) tested at low and high total strain amplitudes of 0.4 and 0.7 pct in case of the forged steel (F-B-M(F)TSCA) and 0.55 and 0.8 pct for the rolled steel (F-B-M(R)TSCA), respectively. Microstructural changes accompanying the LCF testing were identified. The two-step cooled microstructure processed through forging (F-B-M(F)TSC) as well as rolling (F-B-M(R)TSC) revealed a complex multiphase microstructure, along with films and blocks of retained austenite. In both microstructural conditions, vanadium carbide precipitates were too fine to be identified after the TSC treatment. Annealing after TSC produced a stress-free microstructure. The F-B-M(F)TSCA microstructure predominantly consisted of granular/lower bainite, lath martensite, and polygonal ferrite with interlath films as well as blocks of retained austenite, while the F-B-M(R)TSCA microstructure predominantly consisted of lath martensite, granular/lower bainite, and polygonal ferrite with interlath strips/films of retained austenite. Lath martensite content was higher in the F-B-M(R)TSCA condition than in the F-B-M(R)TSCA condition. In both conditions, vanadium carbide precipitates could be seen after annealing. Fatigue-tested F-B-M(F)TSCA microstructure up to a total strain amplitude of 0.4 pct and F-B-M(F)TSCA microstructure up to a total strain amplitude of 0.55 pct were stable. Lath martensite did not undergo deformation and in both microstructural conditions dislocation cell structures were not observed in the ferrite or bainite regions. The interlath retained austenite strips/films played a significant role in preventing the softening during fatigue loading. First, it was stable up to a total strain amplitude of 0.4 and 0.55 pct in the respective microstructures. Second, it underwent heavy deformation during fatigue loading at high total strain amplitudes, thereby accommodating the strain. Fatigue-tested F-B-M(F)TSCA microstructure at a total strain amplitude of 0.7 pct and F-B-M(R)TSCA microstructure at a total strain amplitude of 0.8 pct revealed deformed bainite/martensite laths, dislocation cells, and slip bands in the ferrite regions, which are characteristic features of cyclic softening. The retained austenite transformed to martensite through a strain-induced transformation mechanism and, at that stage, the microstructure contained in addition dislocation-rich bainite and ferrite.  相似文献   

14.
In commercial practice 5.5Ni steel is toughened for cryogenic service by a three-step heat treatment designated the “QLT” treatment. To determine why this treatment is necessary and successful, a series of two-step heat treatments was applied to 5.5Ni steel and the resulting microstructural states were characterized and compared with that obtained through the QLT treatment. It was concluded from this analysis that the QLT treatment lowers the ductile-brittle transition temperature by precipitating a dense distribution of thermally stable austenite along the boundaries of martensite laths, which interrupts the crystallographic alignment of laths within martensite packets and prevents cooperative trans-packet cleavage. Essentially, it reduces the mean free fracture path for cleavage. The multistep heat treatment is necessary because of the low nickel content; a single step heat treatment leads to an austenite precipitate which is either too lean in solute to be retained or too coarse in its distribution to be effective. The problem is avoided in the QLT treatment since the intercritical anneal (L) serves to create regions of high solute content along the prior martensite lath boundaries. The intercritical temper (T) then precipitates a dense distribution of high solute, stable austenite within these enriched regions.  相似文献   

15.
Iron alloys containing 20 and 30 pct Ni and 3 to 4 cu cm H per 100 g metal have been subjected to slow strain-rate tensile tests in a study of hydrogen embrittlement. In the lower nickel massive martensite alloy, embrittlement is manifest as the cracking of prior austenite grain boundaries and is severe at room temperature but less marked at -196°C; while in the higher nickel acicular martensite alloy, the embrittlement observed at 20°C does not occur at —196°C. Hydrogen embrittlement in these materials is believed to be the result of high hydrogen contents in the vicinity of the prior austenite grain boundaries combined with stress concentrations caused by boundary perturbations which result from the impact of the martensite shears. During deformation, microcracks form and propagate in the prior austenite grain boundaries, probably assisted by internal hydrogen pressure and the lowering of crack surface energy by hydrogen adsorption. The temperature dependence and the effect of the type of martensite on the embrittlement can be explained by their effects on the hydrogen content and stress concentrations at prior austenite grain boundaries during deformation.  相似文献   

16.
The microstructure,morphology of precipitates and retained austenite and the volume fraction of retained austenite in 0Cr16Ni5 Mo stainless steel during the tempering process were analyzed using optical microscope(OM),transmission electron microscope(TEM),X-ray diffraction(XRD)and scanning transmission electron microscope(STEM).The results show that the microstructure of the tempered steel is mainly composed of tempered martensite,retained austenite,and delta ferrite.In the case of samples tempered from 500 to 700 ℃,the precipitates are mainly M_(23)C_6,which precipitate along the lath martensite boundaries.The precipitate content increases with the tempering temperature.During the tempering process,the content of retained austenite initially increases and then decreases,the maximum content of retained austenite being 29 vol.% upon tempering at 600 ℃.TEM analysis of the tested steel reveals two morphology types of retained austenite.One is thin film-like retained austenite that exists along the martensite lath boundary.The other is blocky austenite located on packet at the boundary and the original austenite grain boundary.To further understand the stability of reversed austenite,the Ni content in reversed austenite was measured using STEM.Results show a significant difference in nickel concentrations between reversed austenite and martensite.  相似文献   

17.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Somein situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C filMs upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The sit11Ation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which o°Curs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can o°Cur in the same steels, depending on the tempering conditions.  相似文献   

18.
Small crack size accelerates corrosion fatigue propagation through high strength 4130 steel in aqueous 3 pct NaCl. The size effect is attributed to crack geometry dependent mass transport and electrochemical reaction processes which govern embrittlement. For vacuum or moist air, growth rates are defined by stress intensity range independent of crack size (0.1 to 40 mm) and applied maximum stress (0.10 to 0.95 Φys). In contrast small (0.1 to 2 mm) surface elliptical and edge cracks in saltwater grow up to 500 times faster than long (15 to 40 mm) cracks at constant δK. Small cracks grow along prior austenite grain boundaries, while long cracks propagate by a brittle transgranular mode associated with tempered martensite. The small crack acceleration is maximum at low δK levels and decreases with increasing crack length at constant stress, or with increasing stress at constant small crack size. Reductions in corrosion fatigue growth rate correlate with increased brittle transgranular cracking. Crack mouth opening, proportional to the crack solution volume to surface area ratio, determines the environmental enhancement of growth rate and the proportions of inter- and transgranular cracking. Small cracks grow at rapid rates because of enhanced hydrogen production, traceable to increased hydrolytic acidification and reduced oxygen inhibition within the occluded cell.  相似文献   

19.
杨哲  曹睿  刘振宝  梁剑雄  胡家齐 《钢铁》2016,51(10):48-53
 运用Thermal-calc热力学软件、光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段研究了热处理工艺对一种新型的超高强度不锈钢微观组织及力学性能的影响。结果表明,经过固溶处理后钢的基体为高密度位错的板条马氏体组织;强度随着时效温度的升高而逐渐升高,在520~540 ℃时可达到2 000 MPa,且冲击吸收功在540 ℃时达到最大值37 J。此时在板条马氏体上析出大量、细小、弥散以μ相为主的第二相,同时在板条与板条界面上有块状的逆转变奥氏体生成,这是该钢具有超高强度与高韧性的主要原因。  相似文献   

20.
回火温度对Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响   总被引:1,自引:0,他引:1  
江陆  孙新军  李昭东  雍岐龙 《钢铁》2014,49(12):59-64
 利用了X射线衍射仪(XRD)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)研究了回火温度对一种Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响。结果表明,随着回火温度的升高,室温亚稳奥氏体的体积分数逐渐升高。当回火温度为600和625 ℃时,亚稳奥氏体主要以片层状在回火马氏体板条间析出,且排列方向与周围的马氏体板条平行,这种片层状亚稳奥氏体分布较为均匀,尺寸较小,约为60~100 nm,且稳定性较高;当回火温度为650 ℃时,试验钢中出现尺寸较大的块状奥氏体在回火马氏体界面的交叉处不均匀析出。分析表明,块状奥氏体有利于提高钢的塑性,不利于改善钢的低温韧性;而片层状奥氏体能大幅度的改善钢的低温韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号