首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamical evolution of edge turbulence during a transport bifurcation is explored using a flux-driven nonlinear fluid model with a geometry relevant to the plasma edge region. The simulations show that the self-generated mean shear flows can dramatically modify the phase angle between turbulent fluctuations. The changes in phase differences and amplitudes of edge fluctuations give rise to the modifications of turbulent edge transport. The statistical properties of flux and fluctuations are also investigated before and after edge shear flow generation.  相似文献   

2.
Arc plasma torch is an effective tool for spheroidization of metallic powders. However, as most conventional plasma torches were not specifically designed for plasma spheroidization, they may exhibit the disadvantages of the radial injection of powders, large fluctuations in the arc voltage, large gas flow rate, and disequilibrium between multiple plasma jets during the spheroidization process. Therefore, this paper presents a triple-cathode cascade plasma torch (TCCPT) for plasma spheroidization. Its structural design, including three cathodes, a common anode, and three sets of inter-electrodes, are detailed to ensure that powders can be inserted into the plasma jet by axial injection, the arc voltage fluctuations are easily maintained at a low level, and the plasma torches can work at a relatively small gas flow rate. Experimental results showed that the proposed TCCPT exhibits the following characteristics: (1) a relatively small arc voltage fluctuation within 5.3%; (2) a relatively high arc voltage of 75 V and low gas flow rate range of 10–30 SLM; (3) easy to be maintained at the equilibrium state with the equilibrium index of the three plasma jets within 3.5 V. Furthermore, plasma spheroidization experiments of SUS304 stainless steel powers were carried out using the proposed TCCPT. Results verified that the proposed TCCPT is applicable and effective for the spheroidization of metallic powders with wide size distribution.  相似文献   

3.
The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.  相似文献   

4.
Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation, bacterial inactivation, sterilization, and cancer treatment, due to its high chemical activity and limited thermal damage. It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation. In this work, a portable and rechargeable low-temperature plasma spark discharge device (130 mm × 80 mm × 35 mm, 300 g) was designed. The discharge frequency and plume length were optimized by the selection of resistance, capacitance, electrode gap, and ground electrode aperture. Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33 μF, resistance of 1 MΩ, electrode gap of 2 mm, and ground electrode aperture of 1.5 mm. Biological tests indicate that the plasma produced by this device contains abundant reactive species, which can be applied in plasma biomedicine, including daily sterilization and wound healing.  相似文献   

5.
Modification of exposure conditions downstream in the diffusion chamber has been performed in helicon antenna-excited helium plasma by adjusting the magnetic field(intensity and geometry).In the inductively coupled mode(H mode), a reduction in ion and heat fluxes is found with increasing magnetic field intensity, which is further explained by the more highly magnetized ions off-axis around the last magnetic field lines(LMFL). However, in helicon wave mode(W mode), the increase in magnetic field intensity can dramatically increase the ion and heat fluxes.Moreover, the effect of LMFL geometry on exposure conditions is investigated. In H mode with contracting LMFL, off-axis peaks of both plasma density and electron temperature profiles shift radially inwards, bringing about a beam with better radial uniformity and higher ion and heat fluxes. In W mode, although higher ion and heat fluxes can be achieved with suppressed plasma cross-field diffusion under converging LMFL, the poor radial uniformity and a small beam diameter will limit the size of samples suitable for plasma irradiation experiments.  相似文献   

6.
Plasma surface modification of the inner wall of a slender tube is quite difficult to achieve using conventional means. In the work described here, an inner coaxial radio frequency (RF) copper electrode is utilized to produce the plasma and also acts as the sputtered target to deposit copper films in a tube. The influence of RF power, gas pressure, and bias voltage on the distribution of plasma density and the uniformity of film thickness is investigated. The experimental results show that the plasma density is higher at the two ends and lower in the middle of the tube. A higher RF power and pressure as well as larger tube bias lead to a higher plasma density. Changes in the discharge parameter only affect the plasma density uniformity slightly. The variation in the film thickness is consistent with that of the plasma density along the tube axis for different RF power and pressure. Although the plasma density increases with higher tube biases, there is an optimal bias to obtain the highest deposition rate. It can be attributed to the reduction in self-sputtering of the copper electrode and re-sputtering effects of the deposited film at higher tube biases.  相似文献   

7.
The High-Z material tungsten (W) has been considered as a plasma facing material in the divertor region of ITER (International Thermonuclear Experimental Reactor). In ITER, the divertor is expected to operate under high particle fluxes (> 1023 m-2s-1) from the plasma as well as from intrinsic impurities with a very low energy (< 200 eV). During the past dacade, the effects of plasma irradiation on tungsten have been studied extensively as functions of the ion energy, fluence and surface temperature in the burning plasma conditions. In this paper, recent results concerning blister and bubble formations on the tungsten surface under low energy (< 100 eV) and high flux (> 1021 m-2s-1) He/H plasma irradiation are reviewed to gain a better understanding of the performance of tungsten as a plasma facing material under the burning plasma conditions.  相似文献   

8.
The zonal fields effect on the beta-induced Alfven eigenmode(BAE)destabilized by the energetic particles in toroidal plasmas is studied through the gyrokinetic particle simulations.It is found that the localized zonal fields with a negative value around the mode rational surface are generated by the nonlinear BAE.In the weakly driven case,the zonal fields with a strong geodesic acoustic mode(GAM)component have weak effects on the nonlinear BAE evolution.In the strongly driven case,the zonal fields are dominated by a more significant zero frequency component and have stronger effects on the nonlinear BAE evolution.  相似文献   

9.
Plasma flow control technology has broad prospects for application. Compared with conventional dielectric barrier discharge plasma actuators (DBD-PA), the sliding discharge plasma actuator (SD-PA) has the advantages of a large discharge area and a deflectable induced jet. To achieve the basic performance requirements of light weight, low cost, and high reliability required for UAV (Unmanned Aerial Vehicle) plasma flight experiments, this work designed a microsecond pulse plasma supply that can be used for sliding discharge plasma actuators. In this study, the topology of the primary circuit of the microsecond pulse supply is determined, the waveform of the output terminal of the microsecond pulse plasma supply is detected using the Simulink simulation platform, and the design of the actuation voltage, the pulse frequency modulation function and the construction of the hardware circuit are achieved. Using electrical diagnosis and flow field analysis, the actuation characteristics and flow characteristics of sliding discharge plasma under microsecond pulse actuation are studied, the optimal electrical actuation parameters and flow field characteristics are described.  相似文献   

10.
采用圆柱形和圆锥形的放电腔室,使用氢气作为放电气体在不同的射频功率下进行了放电。使用质谱诊断和Langmuir探针诊断相结合的方法对两种放电腔室中的氢等离子体的离子组分、离子能量分布(IED)、等离子体电势、电子密度和有效电子温度进行了对比研究。根据等离子体的诊断结果,讨论了圆锥形与圆柱形两种放电腔室中的放电特性。结果表明:圆柱形放电腔室中含有更多的亚稳态氢原子H *,而圆锥形放电腔室中含有更多的H+离子。圆锥形放电腔室中等离子体具有更高的电子密度和离子密度及更低的等离子体电势。  相似文献   

11.
The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. We also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region.  相似文献   

12.
A Physics Exploratory Experiment on Plasma Liner Formation   总被引:1,自引:1,他引:0  
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets-driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven (Q 1). The experiment (PLX) described in this paper serves as Phase 1 of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using 12 plasma guns arranged in a circle, launching plasma jets toward the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg to 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.  相似文献   

13.
The pulsed corona discharge (CD) generated in contact with water and directly in water, and high-power air plasma jet (APJ) were studied for production of plasma activated water (PAW). The changes of physical (pH, redox potential, conductivity, temperature) and chemical (peroxides, nitrites, nitrates concentrations) properties of treated water were investigated. The comparison of CD generated in gas/water interface and underwater configuration in the same system showed that the interaction of reactive oxygen and nitrogen species formed in ambient air in gas/water system induces different chemical processes, leading to lower pH, higher oxidation-reduction potential (ORP) and higher conductivity of PAW than in underwater discharge. High yield of peroxide was observed in both configurations. The PAW prepared by APJ exhibits high concentration of nitrites and nitrates according to supplied energy, and related significant decrease of pH and increase of ORP and conductivity after treatment. The antimicrobial effect of PAW prepared by CD and plasma jet on lentils sprouts was studied in different treatment and washing times. The APJ appears to have great efficacy on water activation resulted in strong decontamination effect. The PAW treated by APJ for 10 min led to bacterial reduction from initial 8.3 to 5.9 and 4.0 log10 CFU g−1 after 10 and 30 min of washing, respectively.  相似文献   

14.
Plasma immersion ion implantation(PⅢ) overcomes the direct exposure limit of traditional beamline ion implantation, and is suitable for the treatment of complex work-piece with large size. PⅢ technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PⅢ device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m~3, and maximum vacuum degree is about 5?×?10~(-4) Pa. The density of RF plasma in homogeneous region is about 10~9 cm~(-3), and plasma density in the ion implantation region is about 10~(10) cm~(-3). This device can be used for large-size sample material PⅢ treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.  相似文献   

15.
A physical model of transport in an azimuthator channel with the sheath effect resulting from the interaction between the plasma and insulation wall is established in this paper.Particle in cell simulation is carded out by the model and results show that,besides the transport due to classical and Bohm diffusions,the sheath effect can significantly influences the transport in the channel.As a result,the ion density is larger than the electron density at the exit of azimuthator,and the non-neutral plasma jet is divergent,which is unfavorable for mass separation.Then,in order to improve performance of the azimuthator,a cathode is designed to emit electrons.Experiment results have demonstrated that the auxiliary cathode can obviously compensate the space charge in the plasma.  相似文献   

16.
The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves.This paper developed algorithms to estimate the influences.With the algorithms and typical reentry data,influences of GPS frequency and Ka frequency are studied respectively.Results show that,in terms of wave scattering,the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density,ensemble average collision frequency,electron density fluctuation and turbulence integral scale respectively.Also the scattering loss is much smaller than the dielectric loss.The scattering loss of Ka frequency is much less than that of the GPS frequency.In terms of wave propagation,the randomness arouses the fluctuations of amplitude and phase of waves.The fluctuations change with altitudes that when the altitude is below 30 km,fluctuations increase with altitude increasing,and when the altitude is above 30 km,fluctuations decrease with altitude increasing.The fluctuations of GPS frequency are strong enough to affect the tracking,telemetry,and command at appropriate conditions,while the fluctuations of Ka frequency are much more feeble.This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath.  相似文献   

17.
Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of ωc/ω0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Δk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.  相似文献   

18.
An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intensity of the magnet and the change of the magnet position.  相似文献   

19.
A two-dimensional self-consistent fluid model is used to investigate the effects of DC-voltage polarity in plasma initiation and propagation of helium plasma jet.The simulation results indicate that the difference in initial breakdown for the positive jet and negative jet leads to a difference in the electron density of about 4 orders of magnitude,even with the same initial electric field,which also influences the subsequent propagation.In the propagation process of negative jets,the ionization process exists in a longer gas channel behind the streamer head.In addition,the drift process to the infinite grounded electrode driven by the electric field results in higher energy consumption in the ionization process.However,in the positive jet,the ionization process mainly exists in the streamer head.Therefore,the differences in the initial breakdown and propagation process make the electric field intensity and the ionization weaker in the streamer head of the negative jet,which explains the weaker and shorter appearance of the negative jet compared to the positive jet.Our model can adequately reproduce the experimental results,viz.a bullet-like propagation in the positive jet and a continuous plasma plume in the negative jet.Furthermore,it also indicates that the streamer velocity shows the same variations as the electron drift velocity for both positive and negative jets.  相似文献   

20.
When considered inclusively, plasma science and technology encompass immense diversity, pervasiveness and potential: diversity through numerous topical areas (see list of nearly 200 in Table II); pervasiveness with examples covering the full range of energy, time and spatial scale; and potential through innumerable current and future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号