首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, high-speed face milling of AISI H13 hardened steel was conducted to investigate the cutting performance of coated carbide tools. The characteristics of chip morphology, tool life, tool wear mechanisms, and surface roughness were analyzed and compared for different cutting conditions. It was found that as the cutting speed increased, the chip morphology evolved in different ways under different milling conditions (up, down, and symmetric milling). Individual saw-tooth segments and sphere-like chip formed at the cutting speed of 2,500 m/min. Owing to the relatively low mechanical load, longest tool life can be obtained in up milling when the cutting speed was no more than 1,000 m/min. As the cutting speed increased over 1,500 m/min, highest tool life existed in symmetric milling. When the cutting speed was 500 m/min, owing to the higher mechanical load, the flaked region on the tool rake face in symmetric milling was much larger than that in up and down milling. There was no obvious wear on the tool rake face at the cutting speed of 2,500 m/min due to the short tool-chip contact length. In symmetric milling, the delamination of tool material, which did not occur in up and down milling, was caused by the relatively large cutting force. Abrasion had great effect on the tool flank wear in symmetric milling. With the increment of cutting speed, surface roughness decreased first and then increased rapidly. Lowest surface roughness can be obtained at the cutting speed of about 1,500 m/min.  相似文献   

2.
High-speed milling tests were carried out on Ti–6Al–4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti–6Al–4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal–mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti–6Al–4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.  相似文献   

3.
Behavior of austenitic stainless steels has been studied at very high cutting speeds. Turning tests were carried out using the AISI 303 austenitic stainless steel. In particular, the influence of cutting speed on tool wear, surface quality, cutting forces and chip geometry has been investigated. These parameters have been compared when performing machining at traditional cutting speeds (lower than 350?m/min) versus high cutting speeds. The analysis of results shows that the material undergoes a significant change in its behavior when machining at cutting speeds above 450?m/min, that favors the machining operation. The main component of cutting forces reaches a minimum value at this cutting speed. The SEM micrographs of the machined surfaces show how at the traditional cutting speeds the machined surfaces contain cavities, metal debris and feed marks with smeared material particles. Surfaces machined at high cutting speeds show evidence of material side flow, which is more evident at cutting speeds above 600?m/min. Tool wear is located at the tool nose radius for lower cutting speeds, whereas it slides toward the secondary edge when cutting speed increases. An analysis of chips indicates also an important decrement in chip thickness for cutting speeds above 450?m/min. This study concludes that there is an unexplored range of cutting speeds very interesting for high-performance machining. In this range, the behavior of stainless steels is very favorable although tool wear rate is also significant. Nevertheless, nowadays the cost of tool inserts can be considered as secondary when comparing to other operation costs, for instance the machine hourly cost for high-end multitasking machines.  相似文献   

4.
In this study, the machinability of austempered ductile iron (ADI) having a ferritic structure was examined. For this purpose, three types of ductile iron materials (as cast, ADI-250, ADI-375) and two different types of cutting tool materials (ceramics and cermet) were used. To emphasize the role of austempering process, ductile iron (DI) specimens are first austenitized in salt bath at 900°C for 120 minutes after which they are quenched in salt bath at 250°C (ADI-250) and 375°C (ADI-375) for 120 min. Machining tests were carried out at various cutting speeds (100–500 m/min) under the constant depth of cut and feed rate. The performance of both ceramic and cermet tools were evaluated based on the workpiece surface roughness and flank wear. Wear conditions of the cutting tools were characterized by scanning electron microscope. The results point out that the lower austempering temperature results in increasing of the cutting forces, while better surface roughness is obtained. Additionally, the results indicate that the tool wear occurs mainly on the flank face. However, higher cutting speed results in chipping formation in cermet cutting tool.  相似文献   

5.
High-speed face milling experiments of AISI H13 steel (46–47 HRC) with cubic boron nitride (CBN) tools were conducted in order to identify the characteristics of cutting forces, chip formation, and tool wear in a wide range of cutting speed (200–1,200 m/min). The velocity effects are focused on in the present study. It was found that, at the cutting speed of 800 m/min, which can be considered as a critical value, relatively low mechanical load, relatively low degree of chip segmentation, and relatively long tool life can be obtained at the same time. Both the cutting forces and the degree of chip segmentation firstly decrease and then increase with the cutting speed, while the tool life exhibits the opposite trend. By means of analyzing the wear mechanisms of tools tested under different cutting speeds, it was found that, as the cutting speed increases, the influences of fracture and chipping resulting from mechanical load on tool wear were reduced, while the influences of adhesion, oxidation, and thermal crack accelerated by high cutting temperature became greater. There exist obvious correlations among cutting forces, chip formation, and tool wear.  相似文献   

6.
This work presents a systematic and comprehensive investigation of the protective effect of built-up layer (BUL) in dry cutting of stainless steel SUS304. A detailed examination of BUL and built-up edge (BUE) formation conditions, their formation mechanisms, and their protective effect was carried out at different cutting speeds (5–140 m/min), and different feed rates (0.02–0.1 mm/rev). The uncoated cemented carbide tool was used as a cutting tool. The dimensions of BUL/BUE and tool wear were measured by scanning electron microscope (SEM) and laser confocal microscopy (LCM). The protective effect of BUL/BUE was characterized using flank wear progression, as well as crater wear progression, cutting force analysis, and surface roughness analysis. As a result, it was found that BUE forms around the cutting edge at low cutting speeds (5–20 m/min), and BUL, which resembles a water drop, forms on the tool rake face at cutting speeds equal to or above 40 m/min. And a thin layer of flank built-up (FBU) can form on the tool flank face as the cutting speed increases from 40 m/min to 140 m/min. The BUL/BUE formation mechanism was also confirmed. It was revealed that BUL can be considered as a protective layer, which can not only prevent the tool rake face from wear but also decrease the tool flank wear, but BUE can only prevent the crater wear; and to a certain extent, the thin layer of FBU can also work as a protecting layer on the worn tool flank face in dry cutting of SUS304. It was also revealed that the height of BUL plays a very important role in its protective effect. Meanwhile, it was found that BUL and the thin layer of FBU have no or few influences on the amplitude variation of cutting forces and on the surface roughness. These results indicated that BUL can be used to realize the self-protective tool (SPT) in cutting of difficult-to-cut material such as SUS034. In addition, the research also proved that it is necessary to take the influences of BUL, BUE, and FBU formations on tool wear into account in the tool wear model in order to achieve high-precision prediction.  相似文献   

7.
A series of turning tests were conducted to investigate the cutting performance of ceramic tools in high-speed turning iron-based superalloys GH2132 (A286). Three kinds of ceramic tools, KY1540, CC650, and CC670 were used and their materials are Sialon, Al2O3–Ti(C,N), and Al2O3–SiCw, respectively. The cutting forces, cutting temperatures, tool wear morphologies, and tool failure mechanisms are discussed. The experimental results show that with the increase in cutting speed, the resultant cutting forces with KY1540 and CC670 tools show a tendency to increase first and then decrease while those for CC650 increase gradually. The cutting temperature increases monotonically with the increase in cutting speed. The optimum cutting speeds for KY1540 and CC650 when turning GH2132 are less than 100 m/min, while those for CC670 are between 100 and 200 m/min. Flank wear is the main reason that leads to tool failure of KY1540 and CC670 while notch wear is the main factor that leads to tool failure of CC650. Tool failure mechanisms of ceramic tools when machining GH2132 include adhesion, chipping, abrasion, and notching. Better surface roughness can be got using CC670 ceramic tools.  相似文献   

8.
The machining performance of monolithic and composite silicon nitride and Al2O3-based cutting tools in continuous turning of Inconel 718 was examined. The character of tool wear has been found to vary, depending on the feed rate and cutting speeds. At a lower cutting speed, of 120 m/min, tool life is restricted by depth-of-cut notching, while at high cutting speeds (300 m/min), tools fail due to nose wear and fracture. The sensitivity of monolithic Si3N4 and Al2O3 to depth-of-cut notching was found to he significantly reduced with the addition of SiC whiskers, and to a lesser extent with TiC particulates. The ceramic composites also exhibited resistance to nose and flank wear that was higher than that of the monoliths. The internal stress distribution for the cutting tool has been calculated using the finite element method and is the basis for explaining fracture beneath the rake face. Cutting tool wear results are discussed in terms of chemical and mechanical properties of the ceramic tool material, abrasive wear, thermal shock resistance, and metal cutting conditions.  相似文献   

9.
High-speed face milling of AISI H13 hardened steel is conducted in order to investigate the effects of cutting parameters on tool life and wear mechanisms of the cubic boron nitride (CBN) tools. Cutting speeds ranging from 400 to 1,600 m/min are selected. For each cutting speed, the metal removal rate and axial depth of cut are fixed, and different combinations of radial depth of cut and feed per tooth are adopted. The tool life, tool wear progression, and tool wear mechanisms are analyzed for different combinations of cutting parameters. It is found that for most of the selected cutting speeds, the tool life increases with radial depth cut and then decreases. For each cutting speed, the CBN tool life can be enhanced by means of adopting suitable combination of cutting parameters. When the cutting speed increases, the normal wear stage becomes shorter and the tool wear rate grows larger. Because of the variations of cutting force and tool temperature, the tool wear mechanisms change with different combinations of cutting parameters even at the same cutting speed. At relatively low cutting speed, in order to acquire high tool life of the CBN tool, the tool material should possess sufficient capability of resisting adhesion from the workpiece. When relatively high cutting speed is adopted, retention of mechanical properties to high cutting temperature and resistance to mechanical impact are crucial for the enhancement of the CBN tool life.  相似文献   

10.
Application of polycrystalline cubic boron nitride (PCBN) tools as an alternative for ceramic and cemented carbide tools in machining superalloys has been frequently identified as a solution for enhancing process efficiency but only a limited number of studies has been done in this area. The current study explores the effect of the cutting speed, which was varied in a wide range (2–14 m/s), on machinability of age hardened Inconel 718 with PCBN tools. Performance of binderless PCBN grade and grade with low-cBN content was evaluated in terms of tool life, tool wear, cutting forces and surface quality. Chip formation and process dynamics were analyzed as well. It was found that low-cBN grade provided 70–90% better surface finish and tool life than the binderless at moderate speeds (5–8 m/s). Performance of both grades at low and high speed ranges was non-satisfactory due to notching and flaking respectively. At low cutting speed adhesive wear plays a major role while as the speed increases a chemical wear becomes dominant.  相似文献   

11.
This article is concerned with the cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy. The experiments were conducted with coated carbide cutting tools under dry cutting conditions. The effects of cutting parameters on the cutting forces, tool wear and surface integrity (including surface roughness, microhardness and microstructure beneath the machined surface) were investigated. The velocity effects are focused on in the present study. The experimental results show that the cutting forces in three directions increase with cutting speed, feed per tooth and depth of cut (DoC). The widths of flank wear VB increases rapidly with the increasing cutting speed. The surface roughness initially decreases and presents a minimum value at the cutting speed 200 m/min, and then increases with the cutting speed. The microstructure beneath the machined surfaces had minimal or no obvious plastic deformation under the present milling conditions. Work hardening leads to an increment in micro-hardness on the top surface. Furthermore, the hardness of machined surface decreases with the increase of cutting speed and feed per tooth due to thermal softening effects. The results indicated that the cutting speed 200 m/min could be considered as a critical value at which both relatively low cutting forces and improved surface quality can be obtained.  相似文献   

12.
The vibration reduction mechanism of variable pitch end mills was analyzed by the theory of energy balance of the frequency spectrum line. The variable pitch mill can reduce the forced vibration in the cutting process due to the uniform distribution of frequency spectrum line energy and lower peak energy of the cutting force. Aimed at the vibration phenomenon which restricted the efficiency in cutting aero material titanium alloy, high-speed cutting experiments of titanium alloy Ti6Al4V were set with variable and equal pitch mills under dry and down-milling environment. The influences of cutting speeds on cutting forces and tool vibration were analyzed at time domain and frequency domain, respectively, by which the vibration reduction mechanism of variable pitch mill was verified. Due to the misalignment of end mill no. 3, high-level cutting forces and tool vibration were caused by the unequal cutting load on each edge. It is found that severe tool vibration was produced under the cutting speed of 150 m/min because of low-frequency resonance in the cutting process.  相似文献   

13.
Last years analytical or finite element models of milling become more efficient and focus on more physical aspects, nevertheless the milling process is still experimentally unknown on a wide range of use. This paper propose to analyse with accuracy milling operations by investigating the cutting forces values, shape of cutting forces curves obtained for different cutting speeds, and related phenomena as tool wear or tool run-out. These detailed experimental data in milling constitute a suitable experimental basis available to develop predictive machining modelling. All the tests have been conducted on the 304-L stainless steel in many cutting configurations and for different tool geometries. The machinability of the 304-L stainless steel with different tools geometries and configurations in shoulder milling is defined by three working zones: a conventional zone permitting stable cutting (low cutting speed; under 200–250 m.min?1), a dead zone (unfavourable for cutting forces level and cutting stability; between 250 and 450 m.min?1), and a high speed machining zone (high cutting speed; up to 450–500 m.min?1). All the used criteria (cutting forces, chips, wear) confirm the existence of these different zones and a correlation is proposed with cutting perturbations as tool run-out, cutting instability, ploughing, and abrasive wear.  相似文献   

14.
The present article studies the effect on cutter wear of balancing transverse cutting forces during inclined milling applied to a titanium alloy (Ti6Al4V). Indeed, this method is advantageous as it helps reduce vibrations as also the amplitude of such forces thanks to balancing. These observations provide the means to enhance cutting conditions and thus boost productivity when roughing. The method was first validated on Ti6Al4V titanium alloy. A model was then proposed to estimate the maximum axial cutting force at angular positions 0 and p. A wear test was then conducted and notching, flaking and flank types of wear were observed as being most representative. Roughness measurements were made throughout the wear test as also measurements of cutting forces with a new cutter and the worn cutter to provide a comparison. The cutting forces remained acceptable and the roughness values measured remained below the criteria generally retained for roughing. The improvements obtained in terms of extended tool life when using this method were extremely significant since under the same cutting conditions flat milling gave a lifetime of 2.03 min while when machining with balancing of the transverse cutting forces this was extended to 23.6 min.  相似文献   

15.
We examined cutting point temperature and tool wear in driven rotary cutting. Cutting tests under dry and minimum-quantity-lubrication (MQL) conditions of stainless steel (SUS304) were carried out. Cutting point temperature was measured using a tool-work-thermocouple method at various cutting speeds. Cutting point temperature tends to increase with increased cutting speed. In driven rotary cutting, cutting point temperature was lower than that of non-rotation cutting. At high-speed cutting of 500 m/min, cutting point temperature was over 1200 °C in the non-rotation tool, but 1000 °C with driven rotary cutting. In addition, when driven rotary cutting was used with MQL, cutting point temperature was decreased to 900 °C. The magnitude of tool wear corresponded almost precisely to cutting point temperature. Severe adhesion on the rake face was observed and resulted in progressive wear on the rake face in rotary cutting at a cutting speed of 100 m/min. The appropriate cutting speed range passively shifts higher from the viewpoint of cutting temperature with rotary cutting.  相似文献   

16.
Fixed and orbiting scrolls of scroll compressor components have spiral grooves known as scroll wraps. High-precision contour milling using end mills is the best method to produce these scrolls. The aim of our present work is to recognize the mechanism of tool wear on end mills in bottom face machining and to reduce tool wear in highly efficient milling. This paper describes an effective coolant supply system to the cutting point and an appropriate tool geometry developed in the study. The following conclusions can be drawn: (1) By supplying coolant to the cutting edge through the center hole of the tool at a cutting speed of 230 m/min, the wear rate of the flank wear can be reduced to approximately 1/50 of the wear observed in conventional coolant supply. (2) The optimal back clearance angle is 5° for abrasive resistance in the turning operation. (3) By applying 5° to the back clearance angle, the wear rate of the corner edge can be reduced to 1/6 of that observed when the back clearance angle was 15°.  相似文献   

17.
PVD coated (TiN/TiCN/TiN, TiAIN and TiZrN) and uncoated carbide tools were used to machine a nickel base, C-263, alloy at high-speed conditions. The test results show that the multiple TiN/TiCN/TiN coated inserts gave the best overall performance in terms of tool life when machining at cutting speeds up to 68 m min and at depths of cut of 0.635 mm, 1.25 mm and 2.54 mm. All the tool grades tested gave fairly uniform surface roughness (Ra) values, below the rejection criterion, at lower speed conditions. The TiZrN coated inserts gave the lowest component forces when machining at lower cutting speed conditions while the TiA/N coated inserts gave the lowest component forces when machining at a higher speed of 68 m min?1 and depth of cut of 1.25 mm. This tool performance can generally be attributed to the difference in their ability to provide effective lubrication at the cutting zone, thermal conductivity of the coating materials as well as the cutting conditions employed. The uncoated carbide tools generally encountered more severe crater wear, chipping/fracture of the cutting edges as well as pronounced notching during machining. This is due to their inability to provide effective lubrication at the cutting zone, thus impeding the gliding motion of the chips along the rake and flank faces respectively, thus accelerating flank wear. Analysis of the worn tool edges revealed adhesion of a compact “fin-shaped” structure of hardened burrs with saw-tooth like edges. This generally alters the initial geometry of the cutting edge, consequently resulting to poor surface finish with prolonged machining.  相似文献   

18.
张燕  宋志坤  徐东鸣 《工具技术》2014,48(12):25-29
采用不同CBN含量和晶粒结构的PCBN刀具,在不同切削速度下进行了HR-2抗氢钢的高速精密切削试验。通过对PCBN刀具前、后刀面的显微形貌特征进行观测,分析了刀具的失效磨损机理,研究了不同CBN含量及不同切削速度对刀具使用寿命的影响。对刀具磨损的测量结果表明,PCBN刀具高速切削HR-2时,CBN含量高的刀具显示出更长的使用寿命,且在130-200m/min区间为最佳切削速度区域。SEM和EDS分析结果表明,高速精密切削HR-2的磨损机理为氧化磨损、扩散磨损、粘结磨损,同时存在磨粒磨损以及引起的微崩刃现象。  相似文献   

19.
In metal cutting processes, the chatter may cause fast wear of tools and poor surface quality of the processed parts; it can happen on different cutting parameters, but how do we identify the chatter and how do we select suitable cutting parameters to avoid chatter at high material removal rate (MRR). In this paper, the signal processing methods such as time domain, frequency domain, and time–frequency domain analysis are introduced. The signals of cutting force that were collected in milling titanium alloy Ti–6Al–4V at variable cutting speeds varied from 80 to 360 m/min; signal analysis methods such as time domain, frequency domain, and time–frequency domain were put forward. Further analysis results reveal that the chatter occur when cutting speeds are 240 and 360 m/min, when the maximum value of cutting forces increase by 61.9–66.8%, the standard deviation increase by 84.1–86.1%, and the surface roughness increase by 34.2–40.5% compared with that of at 80 m/min. Detail signal d2 is employed to monitor cutting stability state from the result of wavelet analysis.  相似文献   

20.
对激光辅助铣削钛合金Ti-6Al-4V进行了实验研究,分析了切削力、切屑形貌和刀具的磨损特性。结果表明,与普通铣削相比,激光辅助铣削条件下,刀具切向的切削力明显减小,刀具径向的切削力略有增大;随着激光功率的增大,钛合金切屑呈现出从锯齿形向连续形过渡的特征,不再具有明显的绝热剪切带;与普通铣削时刀具崩刃的损伤不同,激光辅助铣削时刀具的磨损主要表现为后刀面磨损;激光辅助铣削可以减小后刀面的最大磨损量,但并不能改善后刀面平均磨损量。激光辅助铣削时,刀具寿命得到了延长,当后刀面的平均磨损量在0.15~0.20mm之间时,可以降低刀具的磨损速度,从而延长刀具的使用寿命,但激光辅助铣削并不能降低刀具的初期磨损速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号