首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this research, a method for implementing automatic seam-tracking for friction stir welding, referred to hear as WeaveTrack, is presented. In this extrumum-seeking control technique, the tool weaves back and forth during welding to maintain the location where axial force is greatest, which is shown to be the center of the weld. Results demonstrate the effectiveness of this technique in tracking both known and unknown weld seams. Comparisons of tensile test results of weaved and nonweaved welds, and findings in related literature, indicate that weaving’s impact on weld quality could be positive. Finally, methods for incorporating WeaveTrack seam-tracking into existing friction stir welding control systems (such as load control) are discussed.  相似文献   

3.
The objective of this study was to determine the effects of the tool pin diameter and tool rotation on the fatigue behaviour of friction stir welded (FSW) lap joints. FSW lap joints of AA 5754 aluminium alloy plates were produced by means of a conventional semiautomatic milling machine. Consequently, defect free FSW lap joints were produced on alloy plates at a constant traverse speed but with different tool pin diameter and tool rotation. Therefore, within this study, tool rotation and the tool pin diameter were accepted as variable parameters, while others held fixed. The results of the tests performed, indicate that an optimisation is required for the studied parameters, in order to obtain reasonable fatigue strength. An index, related to tool rotation, traverse speed, pin diameter, and pin height can be identified and used to select optimum parameters for FSW applications.  相似文献   

4.
Journal of Mechanical Science and Technology - A new spot joining process called dieless friction stir extrusion is proposed, in which simultaneous mechanical interlocking (collar formation) and...  相似文献   

5.
6.
The plunge speed of the tool was divided into two plunge speeds, including pin- and shoulder-plunging speeds, for a detailed study of the plunging process in friction stir spot welding of A6061-T6 sheets. The effect of the pin- and shoulder-plunging speeds on hook geometries and mechanical properties was investigated. The results showed that the shoulder-plunging speed had an obvious effect on the hook geometry and tensile shear load, but the pin-plunging speed had almost no effect. The effective bond width (W eff) and effective sheet thickness (T eff) used to describe the hook geometry were important factors for determining the tensile shear load and fracture mode. Two fracture modes were observed: tensile/shear mixed fracture and shear fracture. The largest tensile shear load was obtained when the joint failed in the tensile/shear mixed fracture.  相似文献   

7.
Journal of Mechanical Science and Technology - Friction stir welding is commonly used to join metals because it is environmentally friendly and provides higher fatigue strength than electric...  相似文献   

8.
Journal of Mechanical Science and Technology - Mechanical properties such as fatigue life, corrosion resistance, brittle fracture, hardness and dimensional stability mainly depend on the residual...  相似文献   

9.
10.
11.
Welding dissimilar metals by fusion welding is challenging. It results in welding defects. Friction stir welding (FSW) as a solid-state joining method can overcome these problems. In this study, 304L stainless steel was joined to copper by FSW. The optimal values of the welding parameters traverse speed, rotational speed, and tilt angle were obtained through Response surface methodology (RSM). Under optimal welding conditions, the effects of welding pass number on the microstructures and mechanical properties of the welded joints were investigated. Results indicated that appropriate values of FSW parameters could be obtained by RSM and grain size refinement during FSW mainly affected the hardness in the weld regions. Furthermore, the heat from the FSW tool increased the grain size in the Heat-affected zones (HAZs), especially on the copper side. Therefore, the strength and ductility decreased as the welding pass number increased because of grain size enhancement in the HAZs as the welding pass number increased.  相似文献   

12.
Residual stresses play a key role on the mechanics underlying the fatigue crack growth propagation of welded joints. Indeed, compressive residual stresses may induce a beneficial enhancement of the fatigue life under loading condition whereas tensile residual stresses may act to increase the stress distribution at crack tip, resulting in a life-threatening condition of the welded structure. In-process distortion and final geometry of welded joints are also affected by residual stresses. In this paper, the longitudinal residual stress distributions in friction stir welding (FSW) joints were investigated for butt and skin–stringer geometries, including lap and T configurations. To measure residual stresses, the cut-compliance and the inverse weight-function methodologies were adapted for skin–stringer FSW geometries via finite element analysis. AA2024-T4 and AA7075-T6 aluminum alloys were used to weld dissimilar skin–stringer joints whereas butt joints were made of AA2024. The effect of most relevant process parameters as well as the cooling during welding process was also investigated for a better understanding of welding residual stresses. Our findings suggest that FSW of complex skin–stringer geometries produces higher residual stresses than those of butt joints, and that the cooling water flux further reduces residual stresses. Changes of process parameters did not affect markedly residual stress distribution.  相似文献   

13.
14.
15.
Welding parameters like welding speed, rotation speed, plunge depth, shoulder diameter etc., influence the weld zone properties, microstructure of friction stir welds, and forming behavior of welded sheets in a synergistic fashion. The main aims of the present work are to (1) analyze the effect of welding speed, rotation speed, plunge depth, and shoulder diameter on the formation of internal defects during friction stir welding (FSW), (2) study the effect on axial force and torque during welding, (c) optimize the welding parameters for producing internal defect-free welds, and (d) propose and validate a simple criterion to identify defect-free weld formation. The base material used for FSW throughout the work is Al 6061T6 having a thickness value of 2.1 mm. Only butt welding of sheets is aimed in the present work. It is observed from the present analysis that higher welding speed, higher rotation speed, and higher plunge depth are preferred for producing a weld without internal defects. All the shoulder diameters used for FSW in the present work produced defect-free welds. The axial force and torque are not constant and a large variation is seen with respect to FSW parameters that produced defective welds. In the case of defect-free weld formation, the axial force and torque are relatively constant. A simple criterion, (?τ/?p)defective?>?(?τ/?p)defect free and (?F/?p)defective?>?(?F/?p)defect free, is proposed with this observation for identifying the onset of defect-free weld formation. Here F is axial force, τ is torque, and p is welding speed or tool rotation speed or plunge depth. The same criterion is validated with respect to Al 5xxx base material. Even in this case, the axial force and torque remained constant while producing defect-free welds.  相似文献   

16.
17.
18.
This research investigates the relationship between the microstructures of thermomechanically affected zone (TMAZ) and heat input in friction stir welding (FSW) of 5086 aluminum alloy. First, welding heat input has been predicted using a three-dimensional finite element analysis; then, welding experiments have been carried out on annealed and work-hardened conditions to study the developed microstructures and the mechanical properties of the welded metal. The results show that the temperature field in the FSW process is asymmetrically distributed with respect to the welding line. Also, both experimental and predicted data illustrates that peak temperatures are higher on the advancing side than the retreating side. In addition, the microstructures are strongly affected by the heat input, while the grain size within the TMAZ decreases with decreasing heat input per unit length during FSW.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号