首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of sulfur dioxide (SO2), a gaseous pollutant, onto activated carbons prepared from oil‐palm shells pre‐treated with potassium hydroxide (KOH) impregnation was studied. Experimental results showed that SO2 concentration and adsorption temperature affected significantly the amount of SO2 adsorbed and the equilibrium time. However, sample particle sizes influenced the equilibrium time (due to effect of diffusion rate) only. Desorption at the same temperature of adsorption and a higher temperature of 200 °C confirmed the presence of chemisorption due to pre‐impregnation. Impregnation with different activation agents was found to have limited effect on the inorganic components of the sample. Compared with the activated carbon pre‐treated with 30% phosphoric acid (H3PO4) that had larger BET and micropore surface areas, the sample impregnated with 10% KOH had a higher adsorptive capacity for SO2, which was closely related to the surface organic functional groups of the sample. In general, the activated carbon prepared from oil‐palm shell impregnated with KOH was more effective for SO2 adsorption and its adsorptive capacity was comparable to some commercial activated carbons. © 2000 Society of Chemical Industry  相似文献   

2.
This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 °C and 700 °C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 °C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H2O2/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 °C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed.  相似文献   

3.
Y.H Li  B.K Gullett 《Fuel》2003,82(4):451-457
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury (Hg0) was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidation (693 K), and nitric acid (6N HNO3) treatment of two activated carbons (BPL, WPL) were conducted to vary their surface oxygen functional groups. Adsorption experiments of Hg0 by the activated carbons were conducted using a fixed-bed reactor at a temperature of 398 K and under N2 atmosphere. The pore structures of the samples were characterized by N2 and carbon dioxide (CO2) adsorption. Temperature-programmed desorption (TPD) and base-acid titration experiments were conducted to determine the chemical characteristics of the carbon samples. Characterization of the physical and chemical properties of activated carbons in relation to their Hg0 adsorption capacity provides important mechanistic information on Hg0 adsorption. Results suggest that oxygen surface complexes, possibly lactone and carbonyl groups, are the active sites for Hg0 capture. The carbons that have a lower carbon monoxide (CO)/CO2 ratio and a low phenol group concentration tend to have a higher Hg0 adsorption capacity, suggesting that phenol groups may inhibit Hg0 adsorption. The high Hg0 adsorption capacity of a carbon sample is also found to be associated with a low ratio of the phenol/carbonyl groups. A possible Hg0 adsorption mechanism, which is likely to involve an electron transfer process during Hg0 adsorption in which the carbon surfaces may act as an electrode for Hg0 oxidation, is also discussed.  相似文献   

4.
The objective of this study is to relate textural and surface characteristics of microporous activated carbon to their methane adsorption capacity. Oil palm shell was used as a raw material for the preparation of pore size controlled activated carbon adsorbents. The chemical treatment was followed by further physical activation with CO2. Samples were treated with CO2 flow at 850 °C by varying activation time to achieve different burn-off activated carbon. H3PO4 chemically activated samples under CO2 blanket showed higher activation rates, surface area and micropore volume compared to other activation methods, though this sample did not present high methane adsorption. Moreover, it was shown that using small proportion of ZnCl2 and H3PO4 creates an initial narrow microporosity. Further physical activation grantees better development of pore structure. In terms of pore size distribution the combined preparation method resulted in a better and more homogenous pore size distribution than the conventional physical activation method. Controlling the pore size of activated carbon by this combined activation technique can be utilized for tuning the pore size distribution. It was concluded that the high surface area and micropore volume of activated carbons do not unequivocally determine methane capacities.  相似文献   

5.
O.C. Cariaso  P.L. Walker 《Carbon》1975,13(3):233-239
Microporous carbon of high purity was produced by the carbonization of Saran at 900° followed by activation in either CO2 at 900°, O2 at 300°, or air at 425°. The activated carbons were characterized using N2 adsorption at ?195° CO2 adsorption at 25°, and mercury and helium displacements. Hydrogen sulfide oxidation (at H2S pressures between 0.4–3.8 Torr) by O2 (in excess of stoichiometric amount) was studied between 100–160° using a microbalance, that is by weighing the build-up of sulfur on the carbon. The predominant reaction, H2S + 12O212S2 + H2O was first order in H2S concentration and independent of O2 concentration. The rate was only slightly reduced by sulfur build-up to at least 36%, by weight, on the carbon. The oxidation rate was significantly higher over the O2-activated carbon than over the CO2-activated carbon. Throughout the studies, oxidation rates could be correlated with area active to O2 chemisorption. It is concluded that H2S oxidation proceeds via rapid dissociative chemisorption of oxygen on carbon sites followed by reaction with H2S. Rates of H2S oxidation were also studies over commercial, granular activated carbons of significant ash contents.  相似文献   

6.
Pecan shell chars were activated using steam, carbon dioxide (CO2), or phosphoric acid (H3PO4) to produce granular activated carbons (GACs). The GACs were characterized for select physical, chemical and adsorption properties. Air oxidation of the GACs was used to increase copper ion (Cu2+) adsorption. BET surface areas of pecan carbons were equal to or greater than commercial GACs. Carbon dioxide activation favored microporosity, while the other activations increased both mesoporosity and microporosity. Bulk densities and particle attrition of the pecan shell GACs were generally similar to the commercial carbons. Air oxidation of steam‐and CO2‐activated GACs increased copper ion adsorption, although not to the same extent as GACs made by H3PO4 activation. Copper ion adsorption and the amount of titratable functional groups greatly exceeded the values for the commercial GACs. Steam‐and CO2‐activated pecan shell carbons were similar to but in some cases exceeded the ability of commercial GACs to remove certain organic compounds from water. GACs from pecan shells showed considerable commercial potential to remove metal ions and organic contaminants from water. © 1999 Society of Chemical Industry  相似文献   

7.
In this study, the optimization of the palm shell based activated carbon production using combination of chemical and physical activation for methane adsorption is investigated. response surface methodology (RSM) in combination with central composite design (CCD) was used to optimize the operating parameters of the production process. Physical activation temperature, chemical impregnation ratio and physical activation time were chosen as the main process variables and the amount of methane adsorption was selected as the investigated response. Phosphoric acid and carbon dioxide were used as chemical and physical agents, respectively. The optimum reaction conditions were found to be a physical activation temperature of 855 °C, H3PO4 impregnation ratio of 9.42 g of phosphorous per gram palm shell and physical activation time of 135 min. The results exhibited significant increase in methane adsorption after physio-chemical activation.  相似文献   

8.
The microporosity of granular and disc-shaped activated carbons prepared by both ZnCl2 and H3PO4 activation has been evaluated by adsorption of nitrogen at −196 °C and immersion calorimetry into liquids of different molecular dimensions (dichloromethane, benzene, 2,2-dimethylbutane, carbon tetrachloride and α-pinene). Experimental results show that immersion calorimetry into dichloromethane provides values of surface area more similar to nitrogen adsorption (BET equation) than benzene. No such effect is found for physically activated carbon. Some apparent anomalies have also been detected for the enthalpy of immersion of carbons activated with H3PO4 into α-pinene due to a small amount of phosphorous remaining in the carbon after washing. This is not the case for carbons activated with ZnCl2, because the washing was more effective in the removal of the chemical.  相似文献   

9.
《分离科学与技术》2012,47(3):354-366
In the present work, commercial-grade activated carbon was modified by steam activation to improve its surface properties for high temperature desulfurization. The modified sample was also further upgraded by impregnating with KOH and KI to promote the chemisorption with of H2S. The H2S adsorption performance was tested under the temperature range of 30–550°C using the temperature program adsorption technique to understand the effect of adsorption temperature on the material adsorption characteristic. It was found that at ambient temperature, the impregnation of activated carbon with KOH can promote the H2S adsorption capacity of activated carbon, whereas the impregnation with KI does not provide a significant beneficial effect. At high adsorption temperature (upto 550°C), both KOH and KI impregnation considerably improve the H2S adsorption performance of activated carbon in terms of the adsorption capacity and breakthrough time. It was revealed from N2 adsorption, SEM and EDS measurement that the chemical reactions between H2S and alkaline compounds (KOH and KI) are promoted at high temperature. Based on all experimental results, the equilibrium adsorption model using the linear isotherm was developed to predict the adsorption behavior of these sorbents in terms of equilibrium isotherm constant and mass transfer coefficient for later scaling-up process.  相似文献   

10.
Lead(II) adsorption from an aqueous solution onto a graphene layer (Cπ electrons) was investigated using activated carbon and charcoal. The carbonaceous materials were treated by several steps to prepare ash free and acidic oxygen free graphite surface by washing with HCl and H2F2 solution followed by out gassing at 1273 K. Changes in Pb(II) adsorption capacity were checked at each step to maximize the area of the graphene layer. As received activated carbon and charcoal and their HNO3 oxidized counterparts were also used for the adsorption experiments for comparison with the ash free and the acidic oxygen free carbons. Boehm titration and Langmuir isotherms were used to evaluate the Pb(II) adsorption onto the adsorbents. The experimental results indicate that an acidic oxygen free graphene layer exhibits a basic character caused by Cπ electrons. When only a small amount of acidic oxygen groups was present, the Pb(II) adsorption strength onto the graphene layer (Cπ electrons) significantly diminished, and the Pb(II) adsorption sites were switched from the graphene layer to carboxylic and lactonic groups on the carbons in the results.  相似文献   

11.
Hydrogen adsorption measurements have been carried out at different temperatures (298 K and 77 K) and high pressure on a series of chemically activated carbons with a wide range of porosities and also on other types of carbon materials, such as activated carbon fibers, carbon nanotubes and carbon nanofibers. This paper provides a useful interpretation of hydrogen adsorption data according to the porosity of the materials and to the adsorption conditions, using the fundamentals of adsorption. At 298 K, the hydrogen adsorption capacity depends on both the micropore volume and the micropore size distribution. Values of hydrogen adsorption capacities at 298 K of 1.2 wt.% and 2.7 wt.% have been obtained at 20 MPa and 50 MPa, respectively, for a chemically activated carbon. At 77 K, hydrogen adsorption depends on the surface area and the total micropore volume of the activated carbon. Hydrogen adsorption capacity of 5.6 wt.% at 4 MPa and 77 K have been reached by a chemically activated carbon. The total hydrogen storage on the best activated carbon at 298 K is 16.7 g H2/l and 37.2 g H2/l at 20 MPa and 50 MPa, respectively (which correspond to 3.2 wt.% and 6.8 wt.%, excluding the tank weight) and 38.8 g H2/l at 77 K and 4 MPa (8 wt.% excluding the tank weight).  相似文献   

12.
Different fibrous activated carbons were prepared from natural precursors (jute and coconut fibers) by physical and chemical activation. Physical activation consisted of the thermal treatment of raw fibers at 950 °C in an inert atmosphere followed by an activation step with CO2 at the same temperature. In chemical activation, the raw fibers were impregnated in a solution of phosphoric acid and heated at 900 °C in an inert atmosphere. The characteristics of the fibrous activated carbons were determined in the following terms: elemental analysis, pore characteristics, SEM observation of the porous surface, and surface chemistry. As the objective of this study was the reuse of waste for industrial wastewater treatment, the adsorption properties of the activated carbons were tested towards pollutants representative of industrial effluents: phenol, the dye Acid Red 27 and Cu2+ ions. Chemical activation by phosphoric acid seems the most suitable process to produce fibrous activated carbon from cellulose fiber. This method leads to an interesting porosity (SBET up to 1500 m2 g−1), which enables a high adsorption capacity for micropollutants like phenol (reaching 181 mg g−1). Moreover, it produces numerous acidic surface groups, which are involved in the adsorption mechanisms of dyes and metal ions.  相似文献   

13.
Dapeng Cao 《Carbon》2005,43(7):1364-1370
Grand canonical Monte Carlo simulations (GCMC) are carried out to investigate the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons are represented by a slit-pore model. At elevated temperatures (T = 505 and 923 K), the activated carbons exhibit essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls monotonically as the pore size increases. At room temperature, however, the selectivity of carbon dioxide relative to hydrogen reaches up to 90, indicating that hydrogen and carbon dioxide can be efficiently separated. Furthermore, the optimized pore sizes, of width H = 1.48 nm for the bulk mole fraction ratio of xCO2/xH2=1:2 and H = 1.18 nm for xCO2/xH2=1:8, are identified in which the activated carbons show the highest selectivity for the separation of hydrogen and carbon dioxide.  相似文献   

14.
Hydrogen sorption characteristics of activated carbons (ACs) produced by physical and chemical activations from two coal mines (Kilimli and Armutcuk) in the Zonguldak region, Turkey were investigated by a volumetric technique at 77 K. H2 adsorption isotherms were obtained on the samples exposed to pyrolytic thermal treatments in a temperature range of 600–900 °C under N2 flow and chemical activation using different chemical agents such as KOH, NH4Cl, ZnCl2 from the two mines. Experimental hydrogen adsorption isotherm data at 77 K were used for the evaluation of the adsorption isotherm constants of the Brunauer-Emmett-Teller (BET) and the Langmuir models, and also the amount of hydrogen adsorbed on the various samples was evaluated by using the adsorption isotherm data. Higher hydrogen adsorption capacity values were obtained for all the heat and the chemically treated activated carbon samples from the Kilimli coal samples than Armutcuk. The amount of H2 adsorbed on the original Kilimli coal samples was 0.020 wt%, and it was increased to 0.89 wt% on the samples pyrolyzed at 800 °C. The highest value of hydrogen adsorption obtained was 1.2 wt% for the samples treated with KOH+NH4Cl mixture at 750 °C followed by oxidation with ZnCl2. It was shown that chemical activations were much more effective than physical activations in increasing the surface area, pore volume and the hydrogen sorption capacities of the samples.  相似文献   

15.
《Carbon》1985,23(3):291-299
There are surface double bonds on carbons which differ from the graphitic surface π-bonds in their chemical reactivity. They may be created by degassing prechlorinated or prehydrogenated carbon samples, besides their natural occurrence in nontreated carbons.Cl2, H2 and HCl may be added to these double bonds and partially degassed by thermal cycling in presence of the gases. This indicates that at least part of these olefinic bonds are thermally labile and are, therefore, important for catalysis and surface chemical modifications of carbons. The surface concentration of the labile bonds is low, amounting to a few hundredths of meq/100m2 of carbon surface area. Discrimination between physisorption and chemisorption of H2 on carbon can be made by analysis of the dependence of adsorption on temperature. With Cl2, considerable overlap between the two processes takes place.  相似文献   

16.
The incorporation of oxygen functional groups onto the surface of eucalyptus activated carbon and its surface chemistry were investigated as a function of oxidation conditions, carbon porous properties and carbon preparation method. Under all treatment conditions of increasing time, temperature and oxidant concentration, liquid oxidation with HNO3, H2O2 and (NH4)2S2O8 and air oxidation led to the increase of acidic group concentration, with carboxylic acid showing the largest percentage increase and air oxidation at the maximum allowable temperature of 350 °C produced the maximum content of both carboxylic acid and total acidic group. Nitric acid oxidation of chemically activated carbon produced higher total acidic content but a lower amount of carboxylic acid compared to the oxidized carbon from physical activation. The increased contents of acidic groups on oxidized carbons greatly enhanced the adsorption capacity of water vapor and heavy metal ions.  相似文献   

17.
Svetlana Bashkova 《Carbon》2007,45(6):1354-1363
The catalytic oxidation of hydrogen sulphide (H2S) on various activated carbon materials was studied. The effects of pore structure, surface characteristics, and nitrogen content on the activity and selectivity of the carbons towards oxidation of H2S were investigated. It was found that a high volume of both micropores and small mesopores, in combination with a relatively narrow pore size distribution, were crucial for the retention of sulphur dioxide (SO2), a by-product of H2S oxidation. For the retention of carbonyl sulphide (COS), another H2S oxidation by-product, high surface reactivity with a significant amount of basic groups were found to be important. The only carbon with all these characteristics, and consequently the carbon that was able to retain both H2S and COS for an extended period of time, was an experimental product, “WSC”. This carbon was found to be superior to the other carbons studied, exhibiting high activity and selectivity for oxidation of H2S to sulphur. H2S breakthrough capacities and selectivity values of the carbons were found to be dependent on the nitrogen content of the carbons. In a hydrogen stream, carbons possessing the highest nitrogen contents exhibited the greatest H2S breakthrough capacities but, at the same time, the lowest selectivity with respect to sulphur formation. In reformate streams, the maximum breakthrough capacity and greatest selectivity were exhibited by carbons with a nitrogen content of about 1-1.5 wt%.  相似文献   

18.
The purpose of the current study is to evaluate the mercury removal ability of F400 and Norit FGD activated carbons, through fixed bed adsorption tests at inert atmosphere (Hg° + N2). Additionally, adsorption tests were realized on F400 activated carbon, in the presence of HCl, O2, SO2 and CO2 in nitrogen flow. The obtained results, revealed that F400 activated carbon, with a high-developed micropore structure and increased BET area, exhibit larger Hg° adsorptive capacity compared to Norit. HCl and O2, can strongly affect mercury adsorption, owing to heterogeneous oxidation and chemisorption reactions, which is in accordance with the assumptions of some researchers. Additionally, SO2 presence enhances mercury adsorption, in contrast with the conclusions evaluated in other studies. The above result could be attributed to the possible formation of sulphur spaces on activated carbon surface and consist of a clarification for the role of SO2 on mercury adsorption. On the contrary, the mercury adsorption efficiency of F400 activated carbon showed a decrease at about 25%, with increasing CO2 concentration from 0 to 12%.  相似文献   

19.
Hancai Zeng  Jia Guo 《Fuel》2004,83(1):143-146
In this work, adsorption of vapour-phase elemental mercury (Hg0) from pulverised-coal combustion flue gas by commercially available granular activated carbons treated with zinc chloride (ZnCl2) impregnation was investigated. The experiment results showed that ZnCl2 impregnation significantly enhanced the adsorptive capacity for mercury vapour, but decreased the specific surface area of the activated carbon. This could be explained by the occurrence of chemisorption, which was confirmed by adsorption tests over a wide range of temperatures. The influence of ZnCl2 solution concentration on the mercury removal performance was also studied. Mechanisms of mercury adsorption onto the Cl-impregnated activated carbon were proposed.  相似文献   

20.
Low concentrations of H2S were directly oxidized to sulphur and small quantities of SO2, over seven different activated carbons with or without impregnation. The effectiveness of virgin activated carbon was tested at 175°C, 700 kPa, and O2/H2S ratio with 5% greater than stoichiometry. The conversion of H2S was 99.9 mol% with SO2 production of 3–6%, for 360 min runtime for Fisher coconut shell activated carbon and 648 min for Envirotrol bituminous (EB) activated carbon. Then the activated carbons became deactivated due to deposition of sulphur on the surface. Under these conditions mesoporous activated carbons such as EB and Hydrodarco had the longest breakthrough time. The addition of 5.5 wt% ammonium iodide, potassium iodide and potassium carbonate individually to EB decreased the production of SO2 while having minimal effect on the overall H2S conversion. The addition of 5.5 wt% NH4I decreased the average SO2 production from 2.5% to 0.9%. The activation energy for the H2S oxidation on the 5.5 wt% NH4I on EB activated carbon was determined to be 40 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号