首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Fiber-polymer matrix interfacial debonding is often observed when mechanical loads are applied to fiber reinforced polymer composites. These defects usually end-up leading to a catastrophic fracture of the composites. In this work, carbon quantum dots (CDs) were incorporated on the surface of carbon fibers (CF), and poly(methyl methacrylate) (PMMA) composites with these modified fibers were able to restore their original properties after been previously damaged. To this end, CDs were synthesized and used to decorate the surface of CF. These decorated CF were then incorporated into PMMA by using a high intensity mixer. The prepared composites were submitted to dynamic mechanical, three-point bending and self-healing tests. Fluorescent CDs with diameters of 10 nm and functional groups, such as amine and carboxylic groups were successfully synthesized by the microwave pyrolysis method. The deposition of CDs on the surface of CF was evaluated and quantified by UV–vis spectroscopy and 1.2 wt.% of CDs on CF was determined. Composites with different surface treatments (including the presence of CD) did not show significant differences in strength, stiffness and damping, suggesting that the surface treatments on CF did not lead to major changes in the degree of interfacial interaction. Self-healing tests showed that damaged composites with CD decorated CF were able to restore their original properties, while no self-healing effect was noted in composites with no CD on CF. The observed self-healing behavior between PMMA and CF decorated with CD is due to the interactions between chemical groups on the surface of the CD and PMMA. Thus, damages related to fiber-matrix interfacial detachments can be repaired through reversible interactions based on CD.  相似文献   

2.
Zinc oxide (ZnO) quantum dot (QD) decorated multi-walled carbon nanotube (MWCNT) hybrid was utilized in the fabrication of high dielectric constant epoxy nanocomposites. Because of the shielding effect of ZnO QD, the well-dispersed epoxy hybrid nanocomposites exhibit frequency insensitive high dielectric constant as well as greatly reduced dielectric loss. With only 1.5 wt% of MWCNT addition, the epoxy/MWCNT-ZnO nanocomposite possesses dielectric constant as high as 31 and dielectric loss as low as 0.01 at 1 kHz. In addition, the epoxy nanocomposite exhibits greatly enhanced tensile properties. The role of ZnO QD decorated MWCNT in the preparation and property improvement of multi-functional polymer nanocomposites is discussed.  相似文献   

3.
Single-walled carbon nanotubes (SWCNTs) have been used to prepare single-layered graphene quantum dots (GQDs) through a simple and green hydrothermal etching method. After the characterization of products and intermediates with scanning electronic microscopy, Raman and FTIR, a possible mechanism has been proposed for the formation of GQDs. The treatment of SWCNTs has resulted in two kinds of GQDs (i.e. GQD1 and GQD2), both of which are monodisperse and single-layered nanosheets with an average lateral dimension of 8 nm and an average height of 0.5 nm. Excited with 365 nm UV light, aqueous solutions of GQDs1 and GQDs2 give green and yellow luminescence, respectively. The differences in optical property between GQDs1 and GQDs2 mainly results from their differences in degree of oxidation.  相似文献   

4.
Na Zhang  Danyu Jiang  Qiang Li 《Carbon》2009,47(5):1214-8954
ZnO quantum dots (QDs) are anchored on multi-walled carbon nanotubes (MWCNTs) by a wet chemical self-assembling technique. The structure and properties of QDs/MWCNTs are also studied in detail. First, MWCNTs are functionalized with thiol by a series of chemical reactions. Fourier transform infrared spectroscopy is used to verify changes of chemical bonds on MWCNTs. At one time, quantum dots of ZnO alcogel are prepared by a sol-gel process. Finally, the functionalized MWCNTs (f-MWCNTs) are added into ZnO alcogels under ultrasonic condition or being magnetically stirred, and ZnO QDs/f-MWCNT composite is obtained by a self-assembling technique. A typical transmission electron microscopy image of the as-received ZnO QDs/f-MWCNT composite reveals that monodispersed ZnO QDs are anchored stably on functionalized MWCNTs. Moreover, photoluminescence spectrum and current-voltage curves display the special optoelectronic properties of this ZnO QDs/f-MWCNT hybrid.  相似文献   

5.
The field emission (FE) properties of vertically aligned carbon nanotube (CNT) arrays having a surface decorated with Ta layer were investigated. The CNTs with 6 nm thickness of Ta decoration showed improved FE properties with a low turn-on field of 0.64 V/μm at 10 μA/cm2, a threshold field of 1.06 V/μm at 1 mA/cm2 and a maximum current density of 7.61 mA/cm2 at 1.6 V/μm. After Ta decoration, the increased emission centres and/or defect sites on the surface of CNTs improved the field enhancement factor. The work function of CNTs with Ta decoration measured with ultraviolet photoelectron spectroscopy decreased from 4.74 to 4.15 eV with increasing Ta thickness of 0–6 nm. The decreased work function and increased field enhancement factor were responsible for the improved FE properties of the vertically aligned CNTs. Moreover, a significant hysteresis in the cycle-testing of the current density with rising and falling electric field process was observed and attributed to the adsorption/desorption effect, as confirmed by the photoelectron spectrum.  相似文献   

6.
The article explores viscoelastic and mechanical property analysis of graphene decorated with graphene quantum dots (GDGQD) reinforced epoxy composite. Tensile, nanoindentation, and nano-dynamic mechanical analysis (DMA) tests were conducted on the composite with 0 to 1 wt% filler variation (an interval of 0.25 wt% maintained). The hardness and elastic modulus for two different loading conditions under a frequency range of 10 to 250 Hz were performed. The viscoelastic properties described through loss tangent and storage modulus graphically and the various factors such as modulus and depth of penetration were influenced by force frequency and mobility of the molecular chain. The results revealed the role of GDGQDs as filler material for enhancing the nanomechanical and tensile properties of the epoxy matrix. The differences in the properties can be ascribed to the filler interfacial bonding with the polymer matrix at the molecular level. The macro-level properties like tensile properties following the same trend as that of the micro-level properties like nano-indentation and nano-DMA results. Further, with the GDGQD aspect ratio, and assuming three-dimensionally filled randomly orientation of filler, the Halpin-Tsai model was satisfied with the experimental tensile modulus values.  相似文献   

7.
Tungsten sulfide catalysts decorated on single and multiwall carbon nanotubes (SWNTs & MWNTs) and activated carbon were synthesized, and XRD, ICP, SEM, TEM and ASAP analyses were employed to acquire the characteristics of each catalyst. Afterwards a gas flow containing 5,000 ppm of H2S was passed over the catalyst in gas hour space velocity (GHSV) of 5,000 h?1, temperature of 65 °C, steam volume percent of 20 and O2/H2S ratio equal to 2. The results revealed that the catalyst supported on MWNTs exhibited higher conversion amongst its counterparts. Then effects of GHSV, steam volume percent in the feed, catalyst loading and temperature were investigated on conversion of hydrogen sulfide to elemental sulfur for tungsten sulfide catalyst decorated on MWNTs.  相似文献   

8.
The field emission properties of double-walled carbon nanotubes (DWCNTs) were remarkably improved by decorating their surface with ruthenium (Ru) metal nanoparticles. The Ru nanoparticles were attached effectively on the surface of DWCNTs via a chemical procedure. The Ru-decorated DWCNTs showed lower turn-on voltage, higher emission current density, and improved emission uniformity compared with pristine DWCNTs. The effect of Ru nanoparticles on the work function and density of states was evaluated by the first-principles calculation. The enhanced field emission properties of Ru-DWCNTs were mainly attributed to the Ru nanoparticles which increased the field enhancement factor and the density of emission sites. Our results indicate that the Ru-decorated DWCNTs can be used as an effective field emitter for various field emission devices.  相似文献   

9.
To enhance the thermo-electrical properties of liquid silicone rubber (LSR) in applications, the carbon fibres (CFs) modified by multiwall carbon nanotubes (MWCNT) on the surfaces were used as the fillers. The MWCNT-modified CFs (MPCFs) were analysed by Fourier transform infrared spectra, thermogravimetric analysis, scanning electron micrograph and energy dispersive X-ray spectroscopy. It was found that MWCNT were successfully adsorbed onto the surface of CFs. The MPCFs functioned as conductive fillers in LSR for thermal and electrical conductivity application and exhibited significant enhancement. The effects of MPCFs loading on thermal conductivity and volume resistivity of LSR composites were investigated in detail. Results of this work revealed that the MPCFs/LSR composites possessed a thermal conductivity of 0.73?W?m?1?K?1 with 14?vol.-% filler loading, approximately 3.48-fold higher than that of pure LSR substrate. And with the increase of MPCFs loading, the least volume resistivity of MPCFs/LSR composites is 10?Ω?cm. Besides, compared with that of neat LSR, the tensile strength of MPCFs/LSR composites increased 0.913?MPa.  相似文献   

10.
We report here a facile preparation of graphene quantum dots (GQDs) by chemical exfoliation of multiwall carbon nanotubes (MWCNTs) using a modified hummers' method. The resultant GQD samples possess strong electronic property, revealing great potential for photocatalyst design. As an efficient promoter, GQDs/P25 nanocomposites have been successfully prepared by simple wet impregnation and subsequent thermal annealing at 200 °C. In the tests of photocatalytic degradation of organic dyes under visible-light irradiation, the GQDs promoted P25 samples which shows much higher photocatalytic activity compared to the pure P25, indicating the crucial roles of GQDs.  相似文献   

11.
Journal of Applied Electrochemistry - A nanocomposite consisting of gold nanoparticles deposited on the side walls of functionalised multi-walled carbon nanotubes, Ox-MWCNT-Aunano, was prepared...  相似文献   

12.
Polyamine-functionalized carbon quantum dots (CQDs) with high fluorescence quantum yield (42.5%) have been synthesized by the low temperature (<200 °C) carbonization of citric acid with branched polyethylenimine (BPEI) in one simple step. The obtained BPEI–CQDs are spherical graphite nanocrystals (average 6.2 nm in size) capped with abundant BPEI at their surfaces. It is the first report that CQDs are both amino-functionalized and highly fluorescent, which suggests their promising applications in chemical sensing.  相似文献   

13.
Qingfeng Liu 《Carbon》2008,46(11):1417-1423
A simple method has been developed for direct synthesis of magnetic multi-walled carbon nanotubes (MWCNTs) homogeneously decorated with size-controllable Fe nanoparticles (Fe-NPs) encapsulated by graphitic layers on the MWCNT surface by pyrolysis of ferrocene. These composites have similar C/Fe atomic ratio of ∼10 and exhibit sufficiently high saturation magnetization for magnetic separation in a liquid phase. Moreover, with 0, ∼1, ∼2 wt% sulfur as growth promoter, the size of Fe-NPs can be controlled with an average diameter of ∼5, ∼22 and ∼42 nm, respectively. When compared to time-consuming wet-chemical methods, the simplicity of this method should allow easy large-scale production of these magnetically functionalized MWCNTs, which can be used as catalyst supports with high stability for effective magnetic separation in liquid-phase reactions, especially under acid/basic conditions.  相似文献   

14.
A stable superhydrophobic surface with low contact angle hysteresis using microscale carbon fabrics decorated with submicroscale silica (SiO2) spheres and carbon nanotubes (CNTs) is created. Without any surface treatment, superhydrophobicity is achieved, and a microsized water drop can be suspended on the three-tier roughened surface, leaving an air film underneath the droplet. A modified Cassie–Baxter model analyzes that the combined effect of SiO2 spheres and CNTs contributes a high area fraction of a water droplet in contact with air, leading to superhydrophobicity. Such a three-tier surface texture has robust superhydrophobic properties.  相似文献   

15.
以壳聚糖为原料,采用水热法一步制备水溶性的荧光碳量子点(CQDs),考察反应条件(壳聚糖质量浓度、温度和时间)对CQDs产物表面官能团和产率的影响,采用TEM、FTIR、XRD、UV-Vis和PL等技术对其形貌、结构和性能进行了表征,并探究其在防伪领域的应用。结果表明,当壳聚糖质量浓度为10 g/L,温度为180 ℃,时间为12 h时,制得的CQDs结构完整且产率较高;微观表现为球状纳米颗粒,直径约为36.2 nm,表面伴有羟基和氨基官能团;制得的CQDs在293和330 nm处均有吸收峰,表现为蓝色荧光,荧光量子产率约为39.8%。将其配制成墨水后,结合喷墨印刷,在自然光和紫外光下可有效实现加密信息的“显”和“隐”,具有较好的防伪效果。  相似文献   

16.
17.
A conventional synthesis of Cadmium selenide (CdSe) quantum dots (QDs) usually employs toxic organic solvents, and the synthesized CdSe QDs must be modified for dispersion in an aqueous solution. This modification often limits the application of CdSe QDs in biomedical fields. In this study, a simple method was developed to synthesize CdSe QDs on single wall carbon nanotubes (SWCNTs) employing the SWCNTs as a template to prevent the aggregation of the CdSe QDs in an aqueous solution without the addition of any organic reagent.Our newly developed synthetic procedure included the formation of SWCNTs with carboxyl groups (SWCNT-COOHs) followed by mixing these with the precursors of Cd and Se to obtain SWCNT-CdSe QDs. The resulting SWCNT-CdSe QDs were analyzed using spectrophotometry, transmission electron microscopy (TEM) and X-ray diffraction (XRD).Results showed that CdSe nanocrystals with a zinc blend structure could be synthesized on the SWCNT-COOHs. The average crystal size of the synthesized CdSe QDs was approximately 3 nm. The blue-shift of CdSe QDs powerfully emitted light at 550 nm as compared to the bulk CdSe at 730 nm. These CdSe QDs were synthesized in an aqueous environment without using toxic surfactants and are expected to have great potential as bio-labeling contrast agents in the future.  相似文献   

18.
Amorphous carbon nanotubes (aCNTs), synthesized through a low-temperature simple method have been decorated with chemically synthesized different zinc oxide (ZnO) nanostructures like nanocones and nanoflowers. The as-prepared samples have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). It has been found that attachment of ZnO nanostructure can effectively enhance the field electron emission properties of the aCNTs. Modification with ZnO nanoflower-like structure can reduce the turn-on field of aCNTs from 8.91 to 3.64 V/μm. The results have been explained in terms of increased roughness which in-turn led to large enhancement of the local electric field and thus facilitated electron emission from this hybrid emitter.  相似文献   

19.
以壳聚糖为原料,采用水热法一步制备水溶性的荧光碳量子点(CQDs),考察反应条件(壳聚糖质量浓度、温度和时间)对CQDs产物表面官能团和产率的影响,采用TEM、FTIR、XRD、UV-Vis和PL等技术对其形貌、结构和性能进行了表征,并探究其在防伪领域的应用.结果表明,当壳聚糖质量浓度为10 g/L,温度为180℃,时...  相似文献   

20.
We propose and demonstrate a novel range of models to accurately determine the optical properties of nitrogen-free carbon quantum dots (CQDs) with ordered graphene layered structures. We confirm the results of our models against the full range of experimental results for CQDs available from an extensive review of the literature. The models can be equally applied to CQDs with varied sizes and with different oxygen contents in the basal planes of the constituent graphenic sheets. We demonstrate that the experimentally observed blue fluorescent emission of nitrogen-free CQDs can be associated with either small oxidised areas on the periphery of the graphenic sheets, or with sub-nanometre non-functionalised islands of sp2-hybridised carbon with high symmetry confined in the centres of oxidised graphene sheets. Larger and/or less symmetric non-functionalised regions in the centre of functionalised graphene sheet are found to be sources of green and even red fluorescent emission from nitrogen-free CQDs. We also demonstrate an approach to simplify the modelling of the discussed sp2-islands by substitution with equivalent strained polycyclic aromatic hydrocarbons. Additionally, we show that the bandgaps (and photoluminescence) of CQDs are not dependent on either out-of-plane corrugation of the graphene sheet or the spacing between sp2-islands. Advantageously, our proposed models show that there is no need to involve light-emitting polycyclic aromatic molecules (nanographenes) with arbitrary structures grafted to the particle periphery to explain the plethora of optical phenomena observed for CQDs across the full range of experimental works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号