首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1D-confinement of polyiodides inside single-wall carbon nanotubes (SWCNT) is investigated. Structural arrangement of iodine species as a function of the SWCNT diameters is studied. Evidence for long range one dimensional ordering of the iodine species is shown by X-ray and electron diffraction experiments independently of the tube diameter. The structure of the confined polyiodides is investigated by X-ray absorption spectroscopy. The confinement influences the local arrangement of the chains. Below a critical diameter Φc of 1 nm, long linear polyiodides are evidenced leading to a weaker charge transfer than for nanotube diameter above Φc. A shortening of the polyiodides is exhibited with the increase of the nanotube diameter leading to a more efficient charge transfer. This point reflects the 1D-confinement of the polyiodides inside the nanotubes.  相似文献   

2.
The selective synthesis of SWCNTs with narrow chirality and diameter distribution by methane decomposition over a Co–MgO catalyst is reported. Raman spectroscopy, temperature programmed oxidation (TPO), UV–Vis–NIR absorption spectroscopy, and nitrogen physisorption were used to probe SWCNTs morphology, reaction selectivity, SWCNTs chirality and diameter distribution, and carbon yield. The catalyst was examined by nitrogen physisorption, X-ray diffraction (XRD), temperature programmed reduction (TPR), and UV–Vis-diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. The results established a clear link between the degree of dispersion of Co species inside the MgO lattice and the catalyst activity and selectivity for SWCNT growth. High dispersion and stabilization of Co species influenced catalytic activity for methane decomposition and the high SWCNT selectivity. The yield of carbon and SWCNT selectivity increased with an increase in temperature, however, SWCNTs diameter distribution shifts to larger diameter tubes as synthesis temperature was increased.  相似文献   

3.
Hua Yang  Hui Zhang 《Polymer》2006,47(21):7607-7610
Full atomistic molecular dynamics simulations have been used to study the diffusion of alkane molecule in single wall carbon nanotube (SWCNT), with different alkane chain lengths and nanotube diameters. In this paper, we calculated the self-diffusion coefficient, mean-square gyration and bond-orientation order parameter of alkane molecule and the average intermolecular interaction energy per segment between SWCNT and alkane. Furthermore, structure of alkane in SWCNT was characterized through the radial distribution function, with results showing that the self-diffusion coefficient is related to the nanotube diameter. The component of mean-square gyration in z-direction scales with alkane chain length in SWCNT(9,9) like N1.07±0.04, which is in good agreement with the prediction from scaling theory for polymers. The obtained results show that nanotube diameter and alkane chain length are important factors affecting the behavior of one-dimensional confined alkanes.  相似文献   

4.
In the interaction between gas molecules with single-walled carbon nanotube (SWCNT) we show that as a result of collisions the gas scattering contributes with an important background signal and should be considered in SWCNT-based gas sensors. Experimental evidence of the collision-induced tube wall deformation is demonstrated using in situ X-ray absorption near-edge structure spectroscopy. Results support the occurrence of the scattering process and show how gas collisions may affect the electronic structure of SWCNTs.  相似文献   

5.
The physisorption of methane in idealized bundles of single walled carbon nanotubes (SWCNT) is investigated in detail in this work employing computational. Several aspects related to the possible application of nanotubes as fuel gas containers are analyzed employing molecular dynamics simulations. The influence of the nanotube diameter on the adsorption capacity of the material and the distribution of the adsorbate are examined by considering bundles of carbon nanotubes with different morphologies. An increase of the load capacity with the nanotube diameter is observed, together with a qualitative change in the distribution of the adsorbed molecules. The effect of porosity is also studied from the point of view of the nanotube separation, finding that this leads to a significant increase in storage capacity in the case of bundles made of small diameter nanotubes. The role of temperature as a possible uptake/release triggering variable is also examined.  相似文献   

6.
The selective synthesis of single-walled carbon nanotubes (SWCNTs) with narrow chirality and diameter distribution by methane decomposition over Fe–MgO catalyst is reported. The catalyst was examined by nitrogen physisorption, X-ray diffraction, temperature programmed reduction, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. High resolution electron microscopy, Raman and optical absorption spectroscopy, temperature programmed oxidation, energy dispersive X-ray spectroscopy and nitrogen physisorption were used to probe reaction selectivity, SWCNT chirality and diameter distribution, carbon yield and effectiveness of purification protocols. The yield of carbon increased with an increase in temperature, although SWCNTs selectivity decreased above the optimum synthesis temperature. Results established a clear link between the degree of dispersion of iron oxide species inside the MgO lattice and the catalyst selectivity for SWCNT growth.  相似文献   

7.
Single-walled carbon nanotube (SWCNT) soot produced by arc discharge was purified through gas and liquid phase oxidations. In the gas-phase oxidation, zirconia beads with different diameters of 1, 5, and 10 mm were packed together with raw SWCNT soot inside a vertical quartz tube to enhance air flow uniformity and an exposed surface area of the raw soot during thermal oxidation in air. A decrease of the bead sizes led to such a stronger oxidation of carbonaceous impurities that ∼10 wt.% higher weight loss was then achieved with the 1 mm beads than without them. A subsequent HNO3 treatment and the second thermal oxidation were engaged to improve further the purity of SWCNTs. Thermogravimetric (TG) analysis, scanning electron microscopy, high resolution transmission electron microscopy, and Raman spectroscopy were used to characterize the samples. The derivative TG (DTG) curves were deconvoluted to quantitatively determine the SWCNT purity of the samples. Our final purified samples showed a yield of ∼26%, a metal impurity of ∼7% and a SWCNT purity of ∼83% as calculated from the deconvoluted DTG curves.  相似文献   

8.
The addition of acetates and nitrates for the synthesis of single-wall carbon nanotubes via laser ablation was explored. Targets containing nominal amounts of acetates or nitrates in addition to Ni and Co catalysts were compared to a standard target containing only Ni and Co at temperatures ranging from 1000 to 1200 °C. The as produced web-like soot was characterized by transmission electron microscopy, Raman spectroscopy and optical absorption spectroscopy. All samples showed a linear increase in SWCNT mean diameter with temperature; however, the rate of mean diameter change with temperature differed for the various targets, more so at lower temperatures. The addition of nitrates improved the SWCNT relative yield over all the temperatures used, whereas the inclusion of acetates improved the relative yield only at lower temperatures. The above results were discussed and analyzed according to the porous structure of the targets resulting from the decomposition of the acetates and nitrates and consequential thermal diffusion changes.  相似文献   

9.
The ferrocene–porphyrin–single-walled carbon nanotube (Fc–H2P–SWCNT) triad hybrid was prepared by amidation reaction between carboxylated SWCNT and aminoporphyrin bearing an appended ferrocenyl substituent. The hybrid described here was fully characterized by a combination of analytical techniques such as Fourier transform infrared spectroscopy, Raman, absorption and emission spectroscopy, atomic force and scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The steady emission characteristics revealed the existence of the effective photoinduced electron transfer among ferrocene, excited porphyrin moiety and SWCNT, which was further confirmed by the results of time-resolved transient absorption spectra. The final lifetime of charge-separation state was observed to be 62.9 μs in N,N-dimethylformamide, which was significant increased compared to the reference nanohybrid porphyrin–SWCNT and the reported ferrocene–porphyrin–fullerene triad. Therefore, Fc–H2P–SWCNT triad hybrid constructed by amidation is rationally expected to be an improved photon-to-electron conversion system.  相似文献   

10.
We report ellipsometric measurement on single walled carbon nanotube (SWCNT) films performed in a large spectral range from 0.07 to 4.97 eV. The complex dielectric functions of SWCNTs are correlated to their diameter distribution extracted from transmission electron microscopy. Here we show that the transition energies between Van Hove singularities are directly related to the strong one dimensional confinement. In the infrared spectral range, the real part of the dielectric function becomes negative. The electronic properties of SWCNTs are extracted from ellipsometry by using a Drude model. The mobility and the mean free path of charge carriers are limited by the high number of SWCNT contacts. In accordance with tight binding simulation, the conductivity and the charge carrier concentration increase with the SWCNT diameter. Finally, we demonstrate that the π-plasmon energy depends on the charge carrier concentration.  相似文献   

11.
Carbon nanotubes (CNTs) were grown directly on substrates by alcohol catalytic chemical vapor deposition using a Co-Mo binary catalyst. Optimum catalytic and reaction conditions were investigated using a combinatorial catalyst library. High catalytic activity areas on the substrate were identified by mapping the CNT yield against the orthogonal gradient thickness profiles of Co and Mo. The location of these areas shifted with changes in reaction temperature, ethanol pressure and ethanol flow rate. Vertically aligned single-walled CNT (SWCNT) forests grew in several areas to a maximum height of ca. 30 μm in 10 min. A pure Co catalyst yielded a vertically aligned SWCNT forest with a bimodal diameter distribution. The effects of Mo on the formation of catalyst nanoparticles and on the diameter distribution of SWCNTs are discussed and Mo as thin as a monolayer or thinner was found to suppress the broadening of SWCNT diameter distributions.  相似文献   

12.
Uniform web-like films consisting single-walled carbon nanotubes (SWCNTs) were deposited on a silicon substrate using the chemical vapor deposition (CVD) of ferrocene–ethanol mist at atmospheric pressure (∼ 1 atm). The tiny mist was generated using a high-frequency ultrasonic vibration. The effects of various parameters including deposition position in the reactor, temperature, ferrocene/ethanol ratio, flow rate of carrier gas (argon), and deposition time on the formation of SWCNTs was investigated using high-resolution scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The worm region outside the furnace was found to be a suitable position for the formation of SWCNT films. The furnace temperature and the flow rate of carrier gas were found to determine the diameter and crystallinity of nanotube. The ferrocene concentration in ethanol strongly influenced the amount of impurity particles in the material. Moreover, the intensity of metallic tail in D-band was found to decrease with increasing the flow rate, showing a possibility of the formation of semiconducting SWCNTs. Results of this study can be used to improve understanding of the growth of SWCNTs by floating catalyst CVD of alcohol mist.  相似文献   

13.
The rapid growth method for vertically aligned, single walled carbon nanotube (SWCNT) arrays on flat substrates was applied to a fluidized-bed, using ceramic beads as catalyst supports as a means to mass produce sub-millimeter-long SWCNT arrays. Fe/Al2Ox catalysts were deposited on the surface of Al2O3 beads by sputtering and SWCNTs were grown on the beads by chemical vapor deposition (CVD) using C2H2 as a feedstock. Scanning electron microscopy and transmission electron microscopy showed that SWCNTs of 2–4 nm in diameter grew and formed vertically aligned arrays of 0.5 mm in height. Thermogravimetric analysis showed that the SWCNTs had a catalyst impurity level below 1 wt.%. Furthermore, they were synthesized at a carbon yield as high as 65 at.% with a gas residence time as short as <0.2 s. Our fluidized-bed CVD, which efficiently utilizes the three-dimensional space of the reactor volume while retaining the characteristics of SWCNTs on substrates, is a promising option for mass-production of high-purity, sub-millimeter-long SWCNT arrays.  相似文献   

14.
The electrical conductivities (σ) of nanocomposites of single-walled carbon nanotubes (SWCNTs) and high density polyethylene (HDPE) have been studied for a large number of nanocomposites prepared in a SWCNT concentration range between 0.02 and 8 wt%. The values of σ obey a percolation power law with an SWCNT concentration threshold, pc = 0.13 wt%, the lowest yet obtained for any kind of carbon-polyethylene nanocomposites. Improved electrical conductivities attest to an effective dispersion of SWCNT in the polyethylene matrix, enabled by the fast quenching crystallization process used in the preparation of these nanocomposites. Characterization by scanning electron microscopy (SEM) and Raman spectroscopy consistently points to a uniform dispersion of separate small SWCNT bundles at concentrations near pc and increased nanotube clustering at higher concentrations. Near pc, high activation energies and geometries of long isolated rods suggest that electron transport occurs by activated electron hopping between nanotubes that are close to each other but still geometrically separate. The degree of SWCNT clustering given by Raman spectroscopy and the barrier energy for electrical conductivity are highly correlated. The nanotubes act as nucleants in the crystallization of the polyethylene matrix, and change the type of supermolecular aggregates from spherulites to axialitic-like objects. The size of crystal aggregates decreases with SWCNT loading, however, in reference to the unfilled polyethylene, the three-dimensional growth geometry extracted from the Avrami exponents remains unchanged up to 2 wt%. Consistency between SEM, Raman and electrical transport behavior suggests that the electrical conductivity is dominated by dispersion and the geometry of the SWCNT in the nanocomposites and not by changes or lack thereof in the HDPE semicrystalline structure.  相似文献   

15.
The effects of catalyst particle size on the purity, yield, and purification efficiency of single wall carbon nanotubes (SWCNTs) synthesized via pulsed laser vaporization were investigated. The purity of as-produced SWCNT material synthesized using Ni and Co nanometal (∼13 nm diameter) catalyst particles was compared to material synthesized using conventional micronmetal (2-3 μm diameter) particles. The SWCNT material from nanometal catalysts demonstrated a 50% increase in SWCNT purity as assessed by optical absorption spectroscopy and thermogravimetric analysis (TGA). A change in the thermal oxidation properties was also observed with the nanometal-SWCNTs exhibiting a suppression of the exothermic oxidation of post-synthesis catalyst. Statistical analysis of the TGA residue yielded mean post-synthesis catalyst particle diameters of 18 ± 6 nm and 3 ± 1 nm for the micronmetal and nanometal produced material, respectively. When a thermal oxidation profile was performed, the micronmetal-produced material showed the typical decrease in SWCNT purity with increasing oxidation temperature while the nanometal-produced material showed increasing SWCNT purity with increasing temperature. Overall, the use of nanometal catalysts significantly increases synthesis yield and offers novel thermal oxidation procedures to thermally remove carbonaceous impurities without the aid of acid treatments for the development of potential large-scale purification processing.  相似文献   

16.
Spray coating is proposed as an optional wet method for preparing nano-sized particles suitable for the growth of single-walled carbon nanotubes (SWCNTs). The obtained SWCNT films are characterized by Raman spectroscopy and electron microscopy, and are confirmed to be comparable to SWCNTs produced by the conventional dip-coating process in terms of crystallinity, tube diameter and carbon yield. The mean diameter of SWCNTs can be effectively reduced from 1.85 to 1.35 nm by prolonging the deposition of Mo. In addition, spray coating allows catalyst preparation on supports other than flat wafers, as demonstrated by the synthesis of high-quality SWCNTs on Al2O3 fiber and quartz wool supports.  相似文献   

17.
Hyeon Su Jeong 《Carbon》2010,48(3):774-6991
A single-walled carbon nanotube (SWCNT) thin plate was prepared using a smectic liquid crystal (Sm LC) template. The induced self-organizing SWCNT plate is attributed to π-π stacking between the hexagonal rings of the SWCNT wall and aromatic moieties in Sm LC. The SWCNT plate was characterized by Raman spectroscopy, scanning electron microscopy, X-ray diffraction and polarized optical microscopy.  相似文献   

18.
One of the main objectives of chemical vapor deposition (CVD) growth of single-walled carbon nanotubes (SWCNT) is control over their diameter and type (metallic or semiconducting). Here, we investigate the evolution of iron catalyst particles on quartz substrates depending on the duration of the reduction step with hydrogen and its effect on the growth of horizontally aligned SWCNT. We find a strong dependence of catalyst particle size and size distribution on the initial iron film thickness and the reduction time at 630 °C. Initial decrease of the particle size is followed by an unexpected increase. Statistical analysis of the Raman radial breathing modes of the SWCNT over large areas gave reliable and reproducible diameter distributions that correlated directly with the catalyst particle size distributions. By changing the reduction time it was possible to reproducibly shift the average SWCNT diameter from 1.5 (±0.3) nm to 1.2 (±0.2) nm while maintaining a nanotube density of 5–6 SWCNT/μm. In order to describe the evolution of the particle size during the reduction process at this particular temperature, we propose a model that includes the diffusion of iron into the quartz and its re-emergence.  相似文献   

19.
A. Tokura  F. Maeda  A. Yoshigoe  Y. Homma  Y. Kobayashi 《Carbon》2008,46(14):1903-1908
We have investigated the adsorption of atomic hydrogen on vertically aligned carbon nanotube (CNT) films using in situ synchrotron-radiation-based core-level (CL) photoelectron spectroscopy and Raman spectroscopy. From C 1s CL spectra, we identified a CL peak component due to C-H bonds of carbon atoms in single-walled carbon nanotubes (SWCNTs). We also found the suppression of π-plasmon excitation, indicating that the hydrogen adsorption deforms the bonding structure. Raman spectra of the SWCNT film indicated that the radial-breathing-mode intensities of SWCNTs decreased due to the adsorption-induced bonding-structure deformation. Moreover, the decrease for small-diameter SWCNTs was more severe than that for large-diameter SWCNTs. Our results strongly suggest that the hydrogen adsorption, which induces the structure deformation from sp2 to sp3-like bonding, depends on the diameter of SWCNTs.  相似文献   

20.
A decrease of nanotube yield is usually observed at high temperature. Here, we report on the origins of the activation and deactivation of the SWCNT growth in this high temperature range (between 700 °C and 850 °C) based on in situ Raman measurements. We observed that, at high temperature, carbon precursors such as ethanol and methane readily reduce metal oxide such as Co3O4. Once reduced, the size distribution of the catalyst particles quickly evolves at high temperature leading to a dramatic deactivation of the nanotube growth. An oxidizing pre-treatment has a stabilizing effect on the catalyst. In addition, we evidenced a threshold partial pressure of the carbon precursor to initiate the growth. This threshold partial pressure sets a second requirement for activating the nanotube growth in addition to the requirement of reducing the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号