首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B.R. Stanmore  J.-F. Brilhac 《Fuel》2008,87(2):131-146
The reactions reviewed here concern those between elemental carbon and NO2, N2O and NO, sometimes in the presence of oxygen. The section on NO includes only updates to recent reviews. Soots, activated carbons and carbon blacks are more reactive than graphite. The magnitudes of the reaction rates are found to be: NO2 > N2O ≈ NO ≈ O2. The presence of a soluble organic fraction (SOF) in soot is found to influence some reactions, and all three reactions suffer from inhibition by surface products. The mechanisms proposed for the surface adsorbates are summarised. All authors found that two types of active site were present; one forming weak bonds (physisorption), and the other undergoing chemisorption to form groupings such as -C-ONO, -C-ONO2 or -C-NO2. The latter decompose to give oxides of carbon, and are sometimes called redox reactions. The adsorbates appear to be the same for all NOx species. Some elemental nitrogen adsorption takes place, and can involve incorporation into the C skeleton. The attack of NO on carbon proceeds via NO2, so that catalysts that facilitate this oxidation are effective. Gaseous SO2 and H2O assist in the process by forming acids which are good oxidants. The change in activation energy with temperature found experimentally for NO and N2O may be due to the form of nitrogen on the edge carbon atoms.  相似文献   

2.
A mechanistic scheme of N2O and N2 formation in the selective catalytic reduction of NO with NH3 over a Ag/Al2O3 catalyst in the presence and absence of H2 and O2 was developed by applying a combination of different techniques: transient experiments with isotopic tracers in the temporal analysis of products reactor, HRTEM, in situ UV/vis and in situ FTIR spectroscopy. Based on the results of transient isotopic analysis and in situ IR experiments, it is suggested that N2 and N2O are formed via direct or oxygen-induced decomposition of surface NH2NO species. These intermediates originate from NO and surface NH2 fragments. The latter NH2 species are formed upon stripping of hydrogen from ammonia by adsorbed oxygen species, which are produced over reduced silver species from NO, N2O and O2. The latter is the dominant supplier of active oxygen species. Lattice oxygen in oxidized AgOx particles is less active than adsorbed oxygen species particularly below 623 K. The previously reported significant diminishing of N2O production in the presence of H2 is ascribed to hydrogen-induced generation of metallic silver sites, which are responsible for N2O decomposition.  相似文献   

3.
In this study, the adsorption capacity of single-wall carbon nanotubes (SWCNTs) bundles with regard to the pure CH4, N2, CO and CO2 gases at 298 K and pressure range from 0.01 up to 2.0 MPa has been investigated experimentally and computationally. Experimental work refers to gravimetric surface excess adsorption measurements of each gas studied in this nanomaterial. Commercial samples of pristine SWCNTs, systematically prepared and characterized at first, were used for the evaluation of their adsorption capacity. A Langmuir type equation was adopted to estimate the total adsorption isotherm based on the experimental surface excess adsorption data for each system studied. Computational work refers to Monte Carlo (MC) simulation of each adsorbed gas on a SWCNTs model of the type (9, 9) in the grand canonical (GC) ensemble at the same conditions with experiment using Scienomics’ MAPS platform software simulation packages such as Towhee. The GCMC simulation technique was employed to obtain the uptake wt% of each adsorbed gas by considering a SWCNTs model of arrays with parallel tubes exhibiting open-ended cylindrical structures as in experiment. Both experimental and simulation adsorption data concerning these gases within the examined carbon material are presented and discussed in terms of the adsorbate fluid molecular characteristics and corresponding interactions among adsorbate species and adsorbent material. The adsorption isotherms obtained exhibited type I (Langmuir) behavior, providing enhanced gas-substrate interactions. We found that both the experimental as well as the simulated adsorption uptake of the examined SWCNTs at these conditions with regard to the aforementioned fluids and in comparison with adsorbate H2 on the same material increase similarly and in the following order: H2 ? N2 ≈ CH4 < CO ? CO2. Furthermore, for each adsorbate fluid the calculations exhibit somewhat greater gas uptake with pressure compared to the corresponding experiment. The difference in the absolute uptake values between experiment and simulation has been discussed and ascribed to the following implicit factors: (i) to the employed model calculations, (ii) to the remained carbonaceous impurities in the sample, and (iii) to a proportion of close ended tubes, contained in the experimental sample even after preparation.  相似文献   

4.
The Fe/ZrO2 catalyst (1% Fe by weight) shows a strong adsorption capacity toward the nitric oxide (at room temperature the ratio NOFe is ca. 0.5) as a consequence of the formation of a highly dispersed iron phase after reduction at 500–773 K. Nitric oxide is adsorbed mainly as nitrosyl species on the reduced surface where the Fe2+ sites are prevailing, but it is easily oxidised by oxygen forming nitrito and nitrato species adsorbed on the support. However, in the presence of a reducing gas such as hydrogen, carbon monoxide, propane and ammonia at 473–573 K the Fe-nitrosyl species react producing nitrogen, nitrous oxide, carbon dioxide and water, as detected by FTIR and mass spectrometers. The results show that nitric oxide reduction is more facile with hydrogen containing molecules than with CO, probably due the co-operation of spillover effects. Experiments carried out with the same gases in the presence of oxygen show, however, a reduced dissociative activity of the surface iron sites toward the species NOχ formed by NO oxidation and therefore the reactivity is shifted to higher temperatures.  相似文献   

5.
Zhongyu Hou  Bingchu Cai  Hai Liu  Dong Xu 《Carbon》2008,46(3):405-413
This paper investigates the consequence of the material property and the plasma gas chemistry (herein referred to the plasma gas-feeding species and methods) on the electrode performance in plasma treatments of screen-printed carbon nanotube (CNT) films. Four plasma gases (Ar, O2, SF6, and CHF3) and three gas-feeding methods were examined. The surface morphology, microstructure, and composition of 11 sample groups have been carefully characterized. Tests of the CNT film electrode subjected to gas discharge and field emission show that surface morphology modification is the most influential factor in respect of lowering the onset voltages. In detail, O2/Ar (O2 followed by Ar) and Ar + CHF3 + SF6 (mixed three gases) treatments are the best choices for ionization and field emission applications, respectively. The relevant results are even better than that of the samples of aligned CNT films prepared by chemical vapor deposition. The underlying mechanisms are modeled by two opposing processes (etching and coating), which phenomenally produce three competing effects, i.e., CNT protruding, bundle forming, and neo-nanostructure forming. The results and the correct behavior of our model suggest that the plasma gas chemistry is the most fundamental factor in the process of plasma treatments of CNT films.  相似文献   

6.
Flue-gas recycling combustion of a sub-bituminous coal and its rapid pyrolysis char at 1120 K has been simulated experimentally in a bubbling fluidized-bed. O2, CO2 and H2O, and NO or N2O were pre-mixed and fed into the bed together with coal/char particles with the O2 concentration in the exit gas maintained at 3.5 vol%. Increasing the inlet O2 concentration, thus increasing the O2 consumption rate and decreasing the flue-gas recycling ratio, caused the once-through conversion of fuel-bound nitrogen into N2O to decrease while the conversion to NO to remain unchanged. The in-bed reductions of NO and N2O were both first order with respect to the respective nitrogen oxide, with the rate constants to increase linearly with the rate of O2 consumption in the bed and thus also with that of char/volatiles consumption. This finding, which indicated linear increase in the concentrations of reactive species involved in NO/N2O reduction with the rate of O2 consumption, enabled consideration that the homogeneous and heterogeneous reduction rates of NO and N2O were proportional to the consumption rates of O2 by the volatiles and char, respectively. The rate analysis of the kinetic data revealed the relative importance of burning volatiles and char as the agents for the reduction of NO and N2O. While the reduction in the gas phase was fully responsible for the NO-to-N2O conversion, the reactions over the char surface governed the NO-to-N2 reduction. The volatiles and char had comparable contributions to the reduction of N2O to N2. The NO-to-N2 and N2O-to-N2 reductions over the char surface were, respectively, accelerated and decelerated by increasing the H2O concentration.  相似文献   

7.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

8.
NiSO4/Al2O3 and NiO/Al2O3 catalyst precursors were formed by calcination of NiSO4·6H2O/Al2O3 at 500 and 800 °C, respectively. The catalyst precursor was reduced under H2 and N2 and then reacted under C2H2, H2 and N2 at 650 °C. Coiled carbon fibres were formed in fixed- and fluidised-bed reactors using the NiSO4/Al2O3 catalyst precursor. Thermodynamic modelling using an infinite equilibrium stage construction predicted complete reduction of NiSO4 to Ni and simultaneous H2S formation occurs in both fixed- and fluidised-bed systems. XRD measurements confirmed that Ni was the only catalytically active crystalline species present at concentrations >0.5 wt.% (XRD detection limit) post-reduction, however XRF and XPS measurements additionally detected the presence of small quantities (<0.9 wt.% S) of S species. S is adsorbed onto the Ni surfaces during reduction when H2S is released and dissociates on the Ni surface. Non-coiled carbon fibres produced on the Ni/Al2O3 catalyst formed from the NiO/Al2O3 precursor demonstrated that modification of Ni/Al2O3 with S is required for coiled carbon fibre synthesis.  相似文献   

9.
Adsorption and reduction of NO2 over activated carbon at low temperature   总被引:1,自引:0,他引:1  
The reactive adsorption of NO2 over activated carbon (AC) was investigated at 50 °C. Both the NO2 adsorption and its reduction to NO were observed during the exposure of AC to NO2. Temperature programmed desorption (TPD) was then performed to evaluate the nature and thermal stability of the adsorbed species. Adsorption and desorption processes have been proposed based on the nitrogen and oxygen balance data. The micropores in AC act as a nano-reactor for the formation of -C(ONO2) complexes, which is composed by NO2 adsorption on existing -C(O) complexes and the disproportionation of adsorbed NO2. The generated -C(ONO2) complexes are decomposed to NO and NO2 in the desorption step. The remaining oxygen complexes can be desorbed as CO and CO2 to recover the adsorptive and reductive capacity of AC.  相似文献   

10.
Adsorption and reduction of NO2 over pitch-based ACFs, both as received and calcined at 1100 °C, were studied in a range of concentrations (NO2, 250-1000 ppm; O2, 0-10%) and temperatures (30-70 °C). Repeated adsorption after regeneration at 300 °C, temperature-programmed desorption (TPD) and diffuse reflectance fourier transformation infrared spectroscopy (DRIFTS) were also applied to analyze the adsorbed NO2 species. Pitch-based ACFs showed rapid NO production and adsorption at 30 °C which stayed at similar conversions until the rapid breakthrough of NO2. A higher reaction temperature of 70 °C decreased the ratio of NO2 adsorption to reduction in the stationary state and shortened the breakthrough time. Higher NO2 concentration increased the rates of both adsorption and reduction to shorten breakthrough time, whereas the presence of oxygen changed the NO2 profiles by enhancing the NO2 adsorption rate and decreasing both the rate and the capacity of reduction. It must be noted that 10% O2 allowed still significant production of NO. The molar O/N ratio evolved from TPD decreased and converged to a constant value according to the NO2 adsorption time, showing that NOx species adsorbed on the ACF changed from NO2 to NO3 along with the time of NO2 adsorption. Such a trend was confirmed by DRIFTS spectra of adsorbed NO2. These results suggest two kinds of NO2 adsorption sites. Site 1 adsorbs NO2 molecules strongly, transferring one oxygen to another adsorbed molecule on a similar site to form NO3ad. Although oxygen in the gas phase oxidized adsorbed NO2 to some extent, especially in the initial stage, disproportionation is still dominant at 10% O2. Such disproportionation produces gaseous NO, leaving NO3 on the surface. Site 2 adsorbs NO2 weakly. Saturation of both sites terminates the adsorption and reduction and results in the breakthrough of NO2. Adsorbed NO3 produces both NO and NO2 when heated, leaving one or two oxygen atoms on the surface, which are evolved as CO and CO2 at the same time, restoring a stationary ability for adsorption and reduction of NO2 through carbon loss.  相似文献   

11.
Nitrogen molecules have been encapsulated into the central hollows of vertically aligned carbon nitride (CN) multiwalled nanofibers by dc plasma-enhanced chemical vapor deposition with C2H2, NH3, and N2 gases on a Ni/TiN/Si(1 0 0) substrate at 650 °C. X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectra showed the existence of nitrogen molecules in CN nanofibers. Elemental mapping images with electron energy loss spectroscopy of the CN nanofiber and catalyst metal, and optical emission spectroscopy spectra of the plasma showed the distribution of nitrogen atoms and molecules in the CN nanofiber, catalyst metal, and gaseous precursor, respectively. These studies showed that atomic nitrogen diffused into the catalytic metal particle because of the concentration gradient and then saturated at the bottom of the particle. Saturated nitrogen atom participated in the formation of the CN nanofiber wall but most of nitrogen was trapped in the central hollow of the nanofiber as molecules.  相似文献   

12.
Free acids of the iron substituted heteropoly acids (HPA), H7[(P2W17O61)FeIII(H2O)] (HFe1) and H18[(P2W15O56)2FeIII2(H2O)2] (HFe2) were prepared from the salts K7[(P2W17O61)FeIII(H2O)] (KFe1) and Na12[(P2W15O56)2FeIII4(H2O)2] (NaFe4), respectively. The iron-substituted HPA were adsorbed on to XC-72 carbon based GDLs to form HPA doped GDEs after water washing with HPA loadings of ca. 1 μmol. The HPA was detected throughout the GDL by EDX. Solution electrochemistry of the free acids are reported for the first time in sulfate buffer, pH 1-3. The hydrogen oxidation reaction was catalyzed by KFe1 at 0.33 V, with an exchange current density of 38 mA/cm2. Moderate activity for the oxygen reduction reaction was observed for the iron substituted HPA, which was dramatically improved by selectively removing oxygen atoms from the HPA by cycling the fuel cell cathode under N2 followed by reoxidation to give a restructured oxide catalyst. The nanostructured oxide achieved an OCV of 0.7 V with a Tafel slope of 115 mV/decade. Cycling the same catalysts in oxygen resulted in an improved catalyst/ionomer/carbon configuration with a slightly higher Tafel slope, 128 mV/decade but a respectable current density of 100 mA/cm2 at 0.2 V.  相似文献   

13.
Carbon nanotubes (CNTs) were synthesized using CH4/H2 plasmas and plasmas simulated using a one-dimensional fluid model. The thinnest and longest CNTs with the highest number density were obtained using CH4/H2 = 27/3 sccm at 10 Torr. These conditions allowed CNTs to grow for 90 min without any meaningful loss of catalyst activity. However, an excess H2 supply to the CH4/H2 mixture plasma made the diameter distribution of the CNTs wider and the yield lower. Hydrogen concentration is considered to affect catalyst particle size and activity during the time interval before starting CNT growth (=incubation period). With CH4/H2 = 27/3 sccm for a growth time of 10 min efficient CNT growth was achieved because the amount of carbon atoms in the CNTs and that calculated from simulation showed good agreement. The effect of hydrogen etching on CNTs was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy by observing CNTs treated by H2 plasma after CNT growth. It was confirmed that (a) multi-walled CNTs were not etched by the H2 plasma, (b) the C 1s XPS spectra of the CNTs showed no chemical shift after the treatment, and (c) C-H bonds were produced in CNTs during their growth.  相似文献   

14.
SO2 has been recognized as an effective reducing agent for N2O over iron-containing zeolite catalysts, lowering the operation temperature up to 100 K with respect to the direct N2O decomposition. This unique behavior contrasts with the common poisoning effect of SO2 over other active de-N2O metals (e.g. Co, Cu, Rh, and Ru). The formation of surface sulfates has been generally posed as the main cause for catalyst deactivation by SO2. Through the use of in situ infrared spectroscopy (DRIFTS), we show that steam-activated FeZSM-5 indeed builds up stable sulfate species during the N2O + SO2 reaction. Significant amounts of sulfur were detected in the used catalyst by elemental analysis and X-ray photoelectron spectroscopy. However, the enhanced N2O conversion is remarkably stable, indicating that the reducing action by SO2 and the sulfation of the surface are decoupled. The resulting sulfate species are thus spectators in the catalytic process and do not block or alter the structure of the active sites for N2O reduction and decomposition.  相似文献   

15.
《Fuel》2003,82(2):147-151
The aim of this paper is to show how a cheap carbonaceous material such as low rank coal-based carbon (or char) can be used in the combined SO2/NO removal from exhaust gas at the linear gas velocity used in commercial systems (0.12 m s−1). Char is produced from carbonization and optionally activated with steam. This char is used in a first step to abate the SO2 concentration at the following conditions: 100 °C, space velocity of 3600 h−1, 6% O2, 10% H2O, 1000 ppmv SO2, 1000 ppmv NO and N2 as remainder. In a second step, when the SO2 concentration in the flue gas is low, NO is reduced to N2 and steam at the following experimental conditions: 150 °C, space velocity of 900 h−1, 6% O2, 10% H2O, 0-500 ppmv SO2, 1000 ppmv NO, 1000 ppmv NH3 and N2 as remainder.It has been shown that the presence of NO has no effect on SO2 abatement during the first step of combined SO2/NO removal system and that low SO2 inlet concentration has a negligible effect on NO reduction in the second step. Moreover, this char can be thermally regenerated after use for various cycles without loss of activity. On the other hand, this regenerated char shows the highest NO removal activity (compared to parent chars, either carbonized or steam activated) which can be attributed to the activating effect of the sulfuric acid formed during the first step of the combined SO2/NO removal system.  相似文献   

16.
Multi-walled carbon nanotubes containing oxygenated groups (O-MWCNTs) have been functionalized with ammonia to improve the adsorption capacity and selectivity of CO2/CH4 in gas adsorption process. The effects of oxygen and nitrogen containing functional groups (e.g. hydroxyl and amine), on CO2 and CH4 adsorption were studied. The ideal adsorption capacities of MWCNTs were determined using volumetric method at ambient temperature and moderate pressures (from 0.1 to 3.0 MPa). The MWCNTs containing nitrogen groups (N-MWCNTs) showed much higher adsorption capacity of CO2 and selectivity of CO2/CH4 against the O-MWCNTs at different pressures. The highest selectivity was observed at lower pressures at 298 K for the N-MWCNTs. The dynamic adsorption experiments were carried out with a feed containing one to fivefold of CO2 to CH4 in a packed bed of N-MWCNTs at 298 K and atmospheric pressure. The breakthrough curves and breakthrough times of CO2 and CH4 were determined for the mixed gases. The results indicated high efficiency of the prepared N-MWCNTs in dynamic separation of CO2 and CH4.  相似文献   

17.
The modification of activated carbon fibres prepared from a commercial textile acrylic fibre into materials with monolithic shape using phenolic resin as binder was studied. The molecular sieving properties for the gas separations CO2/CH4 and O2/N2 were evaluated from the gas uptake volume and selectivity at 100 s contact time taken from the kinetic adsorption curves of the individual gases. The pseudo-first order rate constant was also determined by the application of the LDF model. The samples produced show high CO2 and O2 rates of adsorption, in the range 3-35 × 10−3 s−1, and in most cases null or very low adsorption of CH4 and N2 which make them very promising samples to use in PSA systems, or similar. Although the selectivity was very high, the adsorption capacity was low in certain cases. However, the gas uptake in two samples reached 23 cm3 g−1 for CO2 and 5 cm3 g−1 for O2, which can be considered very good. The materials were heat-treated using a microwave furnace, which is a novel and more economic method, when compared with conventional furnaces, to improve the molecular sieves properties.  相似文献   

18.
A systematic study over Pt/Al2O3 powder and monolith catalysts is carried out using temporal analysis of products (TAP) to elucidate the transient kinetics of NO decomposition and NO reduction with H2. NO pulsing and NO–H2 pump-probe experiments demonstrate the effect of catalyst temperature, NO–H2 pulse delay time and H2/NO ratio on N2, N2O and NH3 selectivity. At lower temperature (150 °C) decomposition of NO is negligible in the absence of H2, indicating that N–O bond scission is rate limiting. At higher temperature NO decomposition occurs readily on reduced Pt but the rate is inhibited by surface oxygen as reaction occurs. The reduction of NO by a limiting amount of H2 at lower temperature indicates the reaction of surface NO with H adatoms to form N adatoms, which react with adsorbed NO to form N2O or recombine to form N2. In excess H2, higher temperatures and longer delay times favor the production of N2. The longer delay enables NO decomposition on reduced Pt with the role of H2 being a scavenger of surface oxygen. Lower temperatures and shorter delay times are favorable for ammonia production. The sensitive dependence on delay time indicates that the fate of adsorbed NO depends on the concentration of vacant sites for NO bond scission, necessary for N2 formation, and of surface hydrogen, necessary for hydrogenation to ammonia. A mechanistic-based microkinetic model is proposed that accounts for the experimental observations. The TAP experiments with the monolith catalyst show an improved signal due to the reduction of transport restrictions caused by the powder. The improved signal holds promise for quantitative TAP studies for kinetic parameters estimation and model discrimination.  相似文献   

19.
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions.  相似文献   

20.
The interactions of nitrogen oxides with carbons differing in the chemical structure of surface functional groups were studied using in situ FTIR combined with the measurements of catalytic activity. Microporous carbon samples with similar pore size distribution were prepared from cellulose. The structure and coverage of adsorbates during reactions at temperatures between 295 and 573 K are determined by FTIR. No significant changes in NOx reaction with carbon surface were found by oxidation of the carbonized film. During the study of the reaction of NO/O2 mixture with carbons, the infrared absorption bands for the surface species formed are similar to the IR bands observed after the reaction of carbon samples with NO2. For both reactions, surface species, including C-NO2, C-ONO, C-NCO and anhydride structures are formed. Catalytic NOx reduction by carbons has been investigated in the temperature range 295-623 K in the flow reactor equipped with an FTIR gas analyzer. As the surface of carbon is exposed to NO2 gaseous NO is formed. The reduction of NO2 to N2 without the use of an externally supplied reductant can be achieved with microporous carbons. Significant NO2 conversion to N2 occurred at 623 K on both oxidized and non-oxidized carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号