首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
在熔炼时以单质形式加入Sb元素,研究了不同含量的Sb对Mg-5Sn-2Al-1.5Zn-0.8Si合金显微组织和力学性能的影响。结果表明,Sb能与Mg基体结合生成Mg3Sb2相。加入0.9%(质量分数)的Sb对Mg2Si相的汉字状结构具有强烈变质作用,Mg2Si中的Si能与Sn发生取代作用,生成Mg2(Si,Sn)复合相,该相的物理性能介于Mg2Si与Mg2Sn之间。随着Sb含量的增加,铸态合金和挤压态合金的延伸率逐渐减小,而抗拉强度呈现先增加后降低的趋势。挤压态合金的强度和塑性明显优于铸态合金,并且Sb含量的增加有利于改善Mg-5Sn-2Al-1.5Zn-0.8Si合金的耐热性能。  相似文献   

3.
The influence of Y on microstructure and mechanical properties of as-cast Mg-5Li-3Al-2Zn alloy was investigated. The results show that the phase compositions of Mg-5Li-3Al-2Zn consist of α-Mg and AlLi phases. Adding Y to the alloy results in the formation of Al2Y compound and facilitates grain refinement. The addition of 0.8 wt.% Y produces the smallest grain size. The tensile tests performed at room temperature show that the additions of Y can improve the mechanical properties of the alloy; the tensile strength and ductility reach peak values when the Y additions are 0.8 wt.% and 1.2 wt.%, respectively. The mechanisms of improvement are related to grain refinement and compound strengthening effects.  相似文献   

4.
5.
6.
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties. The microstructure, phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the clad layer mainly consists of α-Mg, Mg2Si dendrites, Mg17Al12 and Al3Mg2 phases. Owing to the formation of Mg2Si, Mg17Al12 and Al3Mg2 intermetallic compounds in the melted region and grain refinement, the microhardness of the clad layer (HV0.025 310) is about 5 times higher than that of the substrate (HV0.025 54). Besides, corrosion tests in the NaCl (3.5%, mass fraction) water solution show that the corrosion potential is increased from –1574.6 mV for the untreated sample to –128.7 mV for the laser-clad sample, while the corrosion current density is reduced from 170.1 to 6.7 µA/cm2. These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.  相似文献   

7.
Effect of misch metal additions (0.3, 0.6, 0.9 and 1.2 wt%) on the refinement of Mg2Si phase in Mg-1.15Si alloy has been studied and compared with the base alloy. MM addition effectively refines the microstructure by breaking the α-Mg halos and lamellar eutectic phase and the maximum refinement is obtained for 0.6 MM addition. For higher MM additions (0.9 and 1.2 wt%), the refinement effect gets reduced and the formation of RE-Si compound is dominated. Improved tensile properties are obtained with the addition of MM and are attributed to the refinement of microstructure and the presence RE-Si compound. The tensile properties obtained are correlated with the microstructure and mirofractomechnisms.  相似文献   

8.

Effects of ageing treatment on the microstructures, mechanical properties and corrosion behavior of the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr [x=0, 0.2 (wt.%), y=0, 0.1, 0.2, 0.4 (wt.%)] alloys were investigated. Results showed that Ca or/and Sr additions promoted the precipitation hardening behavior of Mg-4.2Zn-1.7RE-0.8Zr alloy and shortened the time to reaching peak hardness from 13 h to 12 h. The maximum hardness of 77.1±0.6 HV for the peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy was obtained. The microstructures of peak-aged alloys mainly consist of α-Mg phase, Mg51Zn20 phase and ternary T-phase. The Zn-Zr phase is formed within the α-Mg matrix, and the Mg2Ca phase is formed near T-phase due to the enrichment of Ca in front of the solid-liquid interface. Furthermore, fine short rod-shaped β′1 phase is precipitated within the α-Mg matrix in the peak-aged condition. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy exhibits optimal mechanical properties with an ultimate tensile strength of 208 MPa, yield strength of 150 MPa and elongation of 3.5%, which is mainly attributed to precipitation strengthening. In addition, corrosion properties of experimental alloys in the 3.5wt.% NaCl solution were studied by the electrochemical tests, weight loss, hydrogen evolution measurement and corrosion morphology observation. The results suggest that peak-aged alloys show reduced corrosion rates compared with the as-cast alloys, and minor additions of Ca and/or Sr improve the corrosion resistance of the Mg-4.2Zn-1.7RE-0.8Zr alloy. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy possesses the best corrosion resistance, which is mainly due to the continuous and compact barrier wall constructed by the homogeneous and continuous second phases.

  相似文献   

9.
Sr和Sb变质AZ61-0.7Si合金的铸态组织和力学性能   总被引:3,自引:0,他引:3  
Mg2Si相的变质和细化被认为是改善含Si镁合金力学性能的关键因素之一.研究了Sr和Sb变质AZ61-0.7Si镁合金的铸态组织和力学性能.研究结果表明:添加0.4%(质量分数)Sb对AZ61-0.7Si镁合金中的汉字状Mg2Si相有一定细化作用,但没有明显变质效果.相反,添加微量Sr对AZ61-0.7Si合金中的汉字状Mg2Si相有明显变质和细化作用.在AZ61-0.7Si合金中添加0.03%~0.09%Sr(质量分数)后,合金中的Mg2Si相从粗大汉字状形貌变为细小的颗粒状和/或多边形状.相应地,合金的抗拉性能和蠕变性能得到显著提高.  相似文献   

10.
11.
Effects of 1.5 wt.% Ag addition and solid solution?+?artificial ageing at 160 °C on the microstructure and mechanical properties of a Mg-5Sn alloy have been studied. The results show that Ag addition has significantly hardened the solution-treated Mg-5Sn alloy. During the ageing process, the hardness increase rate and the strength and ductility of the Mg-5Sn alloy at each state are also improved by Ag addition. The improved strengthening behavior is primarily attributed to the refinement distribution of the Mg2Sn precipitates, the enhanced precipitation process, and the synergistic strengthening effect of Mg2Sn and a metastable plate DO19 phase formed at lower ageing temperature. For each solution-treated alloy, the strength and ductility are higher than the corresponding cast ones. Ageing further enhances the yield strength, and the ductility of the Mg-5Sn-1.5Ag alloy is also increased after ageing. The fracture surfaces of the both peak-aged alloys exhibit the characteristic of a mixture of quasi-cleavage and ductile fracture.  相似文献   

12.
The microstructures of the as-cast and as-extruded Mg-9Li-xY alloys (x = 0, 0.3; wt%) were observed to investigate the effect of Y on the Mg-9Li alloy, and the crystallographic calculations between Mg24Y5 and the matrix were examined on the basis of the edge-to-edge matching model. The results indicated that with the addition of 0.3 wt% Y, the average grain size of α-Mg phases in the as-cast Mg-9Li alloy and β-Li phases in the as-extruded Mg-9Li alloy were reduced remarkably, which was caused by the formation of Mg24Y5 intermetallic compound. Furthermore, crystallographic calculations confirmed that Mg24Y5 particles were effective grain refiners for both α-Mg and β-Li phases in Mg-9Li alloy.  相似文献   

13.
14.

In this work, a new (Y, Gd)H2 precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD, SEM with EDS, TEM with EDS techniques and thermodynamics analysis. Results show that the as-cast alloy contains α-Mg, Mg24(Gd, Y)5, and (Y, Gd)H2 phase. The (Y, Gd)H2 phase usually forms near the eutectic phase Mg24(Gd, Y)5 or in the α-Mg grains, displaying a rectangle-shape. The Mg24(Gd, Y)5 and (Y, Gd)H2 phases crystalize in bcc and fcc structure, respectively, and the (Y, Gd)H2 phase has a semi-coherent relationship with α-Mg matrix. The thermodynamics calculation results reveal that the hydrogen dissolved in the melt leads to the formation of hydrides. It is also found that the (Y, Gd)H2 hydride can form directly from the liquid phase during solidification. Additionally, it can precipitate by the decomposition of Mg24(Gd, Y)5 phase due to absorbing hydrogen from the remaining melt.

  相似文献   

15.
In the present research, the Sb-alloying method was adopted, and the grain refinement and tensile. properties of as-cast Mg-10Zn-5AI alloys with varying Sb addition were investigated. The results showed that with the Sb addition, a new phase (Mg3Sb2) of high melting point forms in the alloy beside the α-Mg matrix, τ-Mg32(AI, Zn)49 phase and φ-Al2Mg6Zn2 phase. With an appropriate amount of Sb addition, the morphologies of the secondary phases and the matrix are changed and the grains are refined. When Sb addition is 0.6wt.%, both ambient and high temperature tensile strengths of the alloy reach their maximum. The hardness of the alloy increases with the increasing of Sb addition. With proper addition of Sb, the tensile failure mode of the alloy changes from cleavage fracture to quasi-cleavage fracture, showing good enhancement effect.  相似文献   

16.
Sr对Mg-4%Si合金中Mg2Si的变质作用   总被引:2,自引:0,他引:2  
研究Sr对过共晶Mg-4%Si(质量分数)合金中Mg2Si相的变质作用与机理。Mg-4%Si合金中存在多面体形初生Mg2Si相与汉字状共晶Mg2Si相。添加Al-10%Sr可以明显细化初生Mg2Si相,同时可以将共晶Mg2Si相由汉字状变质为多面体状或者纤维状。对初生Mg2Si相的细化作用主要是由凝固过程中含Sr颗粒的异质形核作用引起的,而对共晶Mg2Si相的变质作用是由在凝固过程中熔体中的Sr原子在Mg2Si晶体生长表面富集,从而改变了其生长优势所致的。  相似文献   

17.
1 Introduction Magnesium alloys are attractive for applications in the automobile, aerospace and electronic industries due to their light mass, high stiffness, high specific strength, good dimensional stability and damping capacity. It is the lightest sp…  相似文献   

18.
0.5 wt.% Ce and Y were added into the alloy of Mg-8Li-2Zn, respectively. The different behaviors of Ce and Y in the alloy were investigated. Results show that, Ce and Y can both refine the α phase, and the α phase was spheroidized. Two kinds of compounds exist in the alloy when the alloy contains Ce/Y. They are Zn2Ce and Mg6Y, respectively. Zn2Ce mainly distributes at the grain boundary of the alloy with the shape of blocky. Mg6Y mainly distributes in the inner place of grains with the shape of granular. The size of Zn2Ce is much larger than that of Mg6Y. Y and Ce are both favorable for the improvement of strength, and the effect of Y is more obvious. The addition of Ce makes the elongation of the alloy become poor, while the addition of Y can increase the elongation of the alloy.  相似文献   

19.
Utilizing oxide inclusion to induce heterogeneous nucleation event is an available method to achieve grain refinement. In this study, Mg-Al binary alloys were refined by inoculation of in-situ oxidation process. Results show that MgO and MgAl2O4 phases are primary oxide products for Mg-xAl alloys inoculated by in-situ oxidation. For pure Mg and Mg-1Al alloy, MgO is the only oxide product. MgAl2O4 is another oxide product for Mg-xAl alloy as Al content increases to 3 wt.%. For Mg-3Al alloy, average grain size significantly decreases from 1135 to 237 μm, with a high grain refining ratio of 79.1%. Both MgO and MgAl2O4 possess nucleating potency for α-Mg grain. MgAl2O4 exhibits a higher nucleating potency due to the lower misfit with α-Mg. The grain refinement of Mg-xAl alloys inoculated by in-situ oxidation process is attributed to heterogeneous nucleation events of α-Mg grains on MgO or MgAl2O4 particles.  相似文献   

20.
For enhancement of mechanical properties in Mg-9Li-3Al alloys, Mg-9Li-3Al duplex alloys were alloyed by addition of Sn and Y. Microstructure evolution and mechanical property response of as-cast Mg-9Li-3Al alloys by alloying with Sn and Y were investigated by optical microscopy, scanning electron microscopy, X-ray diffractometry and tensile tests. The results indicate that considerable blocky dendrites of primary α phase in Mg-9Li-3Al alloys become lath-like due to the addition of Sn. With addition of Y, Mg-9Li-3Al alloy consists of both block-like and lath-like α-Mg dendrites. The as-cast Mg-9Li-3Al-1Sn-1Y alloy shows a yield strength of 118 MPa, ultimate tensile strength of 148 MPa and the elongation to failure of 21%. Improvement in both strength and elongation of Mg-9Li-3Al alloys with Sn and Y addition is attributed to the combined action of MgLi2Sn and Al2Y intermetallic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号