共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
对机动目标进行跟踪一直是甚具挑战性的问题,特别是跟踪高速高机动目标在理论上和实践上都有较高的技术难度。现有各种算法在这个问题上均有各自的缺点和不足。该文在现有的运动机动模型和IMM算法的基础上,提出了使用多种机动模型交互的IMM算法进行高速高机动目标跟踪。不同机动模型之间的互补使这种算法克服了使用单一模型的一些问题。使用“当前”统计模型、二级滤波模型和CV模型进行交互是一种可行的高速高机动目标跟踪方案。为验证算法的有效性,进行了Monte Carlo仿真。仿真结果表明,该算法在性能和计算复杂度之间取得了较好的平衡,有很好的可实现性。 相似文献
3.
4.
5.
6.
本文提出了一种新和自适应调节跟踪数据库的方法。这种算法利用了跟踪帧周期与滤波精度和滤波器模型参数之间的解析关系,解决了自适应调节数据库时确定调节量的问题。仿真结果表明,这种算法不权保留了多模型变数据率方法的主要优点。而且克服了现有多模型变数据库方法计算太太的缺点。 相似文献
7.
机动目标自适应高斯模型与跟踪算法 总被引:4,自引:0,他引:4
提出了一种描述机动目标运动状态的自适应高斯模型,在这种模型中,机动目标的加速度被认为是具有非零均值、时间相关的随机过程,并假定其概率密度函数服从高斯分布。指出了机动目标运动模型的均值和方差与目标机动加速度最佳当前估计值之间的关系,在此基础上,提出了相应的自适应卡尔曼滤波算法。仿真结果表明,该算法对机动目标在不同机动方式下的位置、速度和加速度均有良好的跟踪效果,且所需计算量小。 相似文献
8.
9.
研究了三维情况下IMM算法在无源时差定位系统中的应用。由于CV和Singer模型及CT模型状态变量维数不一致,导致IMM算法中数据无法有效地交互与融合。文中对CV和CT模型进行扩维改进,找到适合对三维机动目标进行跟踪的CV—Singer模型.通过与CV—nCT模型的跟踪效果仿真比较验证了其优越性。 相似文献
10.
11.
交互式多模型算法(IMM)和基于模糊控制的交互多模型算法(FIMM)是实际中常用的目标跟踪算法,然而其模型集合固定,当需要大量模型覆盖目标机动时,会导致计算量激增,且过多模型可能带来不必要的模型竞争,降低跟踪性能。针对这一缺陷,提出了一种基于模糊控制的改进自适应IMM算法(FAIMM),采用一种模型概率的非线性映射处理方法实时筛选模型子集,剔除无用模型,增加有用模型的权重,并通过模糊推理机制自动调整过程噪声水平,使得算法对不同的目标机动模式具有更强的自适应能力。仿真结果表明,提出的算法跟踪性能优于IMM算法以及FIMM算法,能够更好地匹配目标的机动模式。 相似文献
12.
13.
一种新的机动目标跟踪的多模型算法 总被引:4,自引:1,他引:4
设计了一种仅仅使用两个模型实现对机动目标精确跟踪的多模型算法,采用了含有法向和切向加速度的加速度均值自适应的当前统计模型和扩展后的常速模型进行交互。该算法不受目标转弯率大小和变化的限制,对目标运动模式的未知参数变化的适应性较强。仿真结果表明,该算法对目标的跟踪精度明显优于传统的使用3个以上模型交互的IMM-CV/CT算法。由于本算法能够估计出目标的法向和切向加速度,进行适当的模型集设计后,可以实现对复杂、快速机动目标的全过程跟踪,具有可扩展性的应用前景。 相似文献
14.
一种新的机动目标跟踪的多模型算法 总被引:11,自引:0,他引:11
采用带渐消因子的当前统计模型与匀速运动模型进行交互,设计了一种新的机动目标跟踪的交互式多模型算法。当前统计模型具有对一般机动目标跟踪精度高的特点,通过渐消因子的引入增强了该模型对突发机动的自适应跟踪能力,同时通过与CV模型的交互保证了对非机动目标的跟踪性能。仿真结果表明,在跟踪一般机动目标时,其误差和当前统计模型与CV模型交互的IMM算法相当;在跟踪突发机动目标时,该文算法的误差明显小于当前统计模型与CV交互的IMM算法。 相似文献
15.
16.