首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
自适应转弯模型的机动目标跟踪算法   总被引:5,自引:3,他引:5  
赵艳丽  刘剑  罗鹏飞 《现代雷达》2003,25(11):14-16
给出了一种利用白适应转弯速率模型的IMM跟踪算法,可以用于机动目标的跟踪中。每一步通过交互输出的速度和加速度的估计值来计算转弯速率,它的大小等于加速度和速度的比值。本文中对提出的白适应算法和其他两种IMM算法进行了比较。  相似文献   

2.
对机动目标进行跟踪一直是甚具挑战性的问题,特别是跟踪高速高机动目标在理论上和实践上都有较高的技术难度。现有各种算法在这个问题上均有各自的缺点和不足。该文在现有的运动机动模型和IMM算法的基础上,提出了使用多种机动模型交互的IMM算法进行高速高机动目标跟踪。不同机动模型之间的互补使这种算法克服了使用单一模型的一些问题。使用“当前”统计模型、二级滤波模型和CV模型进行交互是一种可行的高速高机动目标跟踪方案。为验证算法的有效性,进行了Monte Carlo仿真。仿真结果表明,该算法在性能和计算复杂度之间取得了较好的平衡,有很好的可实现性。  相似文献   

3.
4.
针对在非线性机动目标跟踪中存在的滤波器易发散、机动检测有延迟等问题,把Unscented Kalman Filter(UKF)引进到交互多模型算法(IMM)中,设计了交互多模型UKF滤波器。并利用目标运动模型集概率的相对变化率设计了自适应交互多模型UKF滤波器,最后进行了计算机仿真。蒙特卡罗仿真结果表明,两种滤波算法都具备UKF滤波器精度高、稳定性好、不易发散的优点,同时不需了解目标机动的先验信息,适合于实际应用;并且自适应交互多模型UKF滤波器具有更好的跟踪效果。  相似文献   

5.
张娜  王锐  蔡炯 《信号处理》2022,38(2):367-374
在机动目标跟踪中,传统当前统计模型卡尔曼滤波算法对弱/无机动目标跟踪精度不高,对突发机动跟踪精度显著下降,且跟踪性能受限于先验参数.针对上述问题,本文提出一种基于机动检测的参数自适应机动目标跟踪算法,算法利用新息的概率分布特性构建双阈值检测门限,依据检测结果进行参数自适应调整.首先,利用加速度预测误差方差信息,自适应调...  相似文献   

6.
本文提出了一种新和自适应调节跟踪数据库的方法。这种算法利用了跟踪帧周期与滤波精度和滤波器模型参数之间的解析关系,解决了自适应调节数据库时确定调节量的问题。仿真结果表明,这种算法不权保留了多模型变数据率方法的主要优点。而且克服了现有多模型变数据库方法计算太太的缺点。  相似文献   

7.
机动目标自适应高斯模型与跟踪算法   总被引:4,自引:0,他引:4  
党建武  黄建国 《电讯技术》2003,43(2):109-113,119
提出了一种描述机动目标运动状态的自适应高斯模型,在这种模型中,机动目标的加速度被认为是具有非零均值、时间相关的随机过程,并假定其概率密度函数服从高斯分布。指出了机动目标运动模型的均值和方差与目标机动加速度最佳当前估计值之间的关系,在此基础上,提出了相应的自适应卡尔曼滤波算法。仿真结果表明,该算法对机动目标在不同机动方式下的位置、速度和加速度均有良好的跟踪效果,且所需计算量小。  相似文献   

8.
9.
陈莹莹  谢坚 《电子科技》2012,25(7):61-65
研究了三维情况下IMM算法在无源时差定位系统中的应用。由于CV和Singer模型及CT模型状态变量维数不一致,导致IMM算法中数据无法有效地交互与融合。文中对CV和CT模型进行扩维改进,找到适合对三维机动目标进行跟踪的CV—Singer模型.通过与CV—nCT模型的跟踪效果仿真比较验证了其优越性。  相似文献   

10.
唐政  郝明  周鹏  杜利刚 《电子科技》2013,26(4):78-81
针对一般卡尔曼滤波融合跟踪方法无法实现对机动目标的有效跟踪问题,提出一种自适应卡尔曼滤波融合方法,设计一种能够提供目标开始机动瞬时估计的目标机动探测器,反复对目标的加速机动进行估计,当确定目标开始机动时,卡尔曼滤波模型将自适应地调整为目标机动状态模型。最后,通过仿真实验对比分析,证明文中所提方法优于一般卡尔曼滤波融合方法。  相似文献   

11.
交互式多模型算法(IMM)和基于模糊控制的交互多模型算法(FIMM)是实际中常用的目标跟踪算法,然而其模型集合固定,当需要大量模型覆盖目标机动时,会导致计算量激增,且过多模型可能带来不必要的模型竞争,降低跟踪性能。针对这一缺陷,提出了一种基于模糊控制的改进自适应IMM算法(FAIMM),采用一种模型概率的非线性映射处理方法实时筛选模型子集,剔除无用模型,增加有用模型的权重,并通过模糊推理机制自动调整过程噪声水平,使得算法对不同的目标机动模式具有更强的自适应能力。仿真结果表明,提出的算法跟踪性能优于IMM算法以及FIMM算法,能够更好地匹配目标的机动模式。   相似文献   

12.
Singer模型使用标准卡尔曼滤波器对机动目标进行跟踪,当系统模型不准确或噪声统计特性不确定时,容易引起滤波发散或跟踪精度下降等问题。针对这种情况,本文提出了一种采用自适应渐消卡尔曼滤波的Singer模型算法(AKF Singer),通过引入渐消因子来抑制滤波器的记忆长度,自适应的调整新息权重和滤波器增益,从而避免发散。仿真结果表明,本文所提算法能够有效抑制滤波发散,相比于传统Singer模型,具有更好的跟踪稳定性和更高的跟踪精度。  相似文献   

13.
一种新的机动目标跟踪的多模型算法   总被引:4,自引:1,他引:4  
设计了一种仅仅使用两个模型实现对机动目标精确跟踪的多模型算法,采用了含有法向和切向加速度的加速度均值自适应的当前统计模型和扩展后的常速模型进行交互。该算法不受目标转弯率大小和变化的限制,对目标运动模式的未知参数变化的适应性较强。仿真结果表明,该算法对目标的跟踪精度明显优于传统的使用3个以上模型交互的IMM-CV/CT算法。由于本算法能够估计出目标的法向和切向加速度,进行适当的模型集设计后,可以实现对复杂、快速机动目标的全过程跟踪,具有可扩展性的应用前景。  相似文献   

14.
一种新的机动目标跟踪的多模型算法   总被引:11,自引:0,他引:11  
采用带渐消因子的当前统计模型与匀速运动模型进行交互,设计了一种新的机动目标跟踪的交互式多模型算法。当前统计模型具有对一般机动目标跟踪精度高的特点,通过渐消因子的引入增强了该模型对突发机动的自适应跟踪能力,同时通过与CV模型的交互保证了对非机动目标的跟踪性能。仿真结果表明,在跟踪一般机动目标时,其误差和当前统计模型与CV模型交互的IMM算法相当;在跟踪突发机动目标时,该文算法的误差明显小于当前统计模型与CV交互的IMM算法。  相似文献   

15.
在进行可观测性分析的基础上,综合利用方位角和频率观测信息,提出了一种利用单个模型对机动目标进行无源跟踪的UKF算法,该算法通过对目标的运动状态和机动参数进行联合估计自适应地逼近真实的运动模型,从而进行准确跟踪。与现有算法相比,本文的算法不仅运算量小,而且降低了对观测站自身的运动要求,但却保持了良好的性能。仿真结果表明了算法的有效性和正确性。  相似文献   

16.
针对“当前”统计模型下的卡尔曼滤波算法在跟踪匀速目标时误差较大的缺陷和强跟踪滤波器对非机动部分跟踪精度不理想的缺陷。通过改进基于截断正态分布下的加速度方差模型,提高了对非机动目标的跟踪精度;对卡尔曼滤波算法中预测误差协方差及渐消因子的计算作出修正,改进机动部分和非机动部分的精度;将目前常用的估计协方差的计算公式采用Joseph公式,增强数值的稳定性和算法的鲁棒性。仿真和实践结果表明该算法具有良好的性能。  相似文献   

17.
畅言  严超  罗利强  马可 《电子科技》2014,27(1):34-37
针对传统Singer滤波算法,跟踪机动目标精度较低、收敛较慢的问题,提出了一种改进的Singer算法,该算法根据新息的衰减记忆平均值和加速度滤波值,实时调整过程噪声协方差矩阵,改变滤波增益,减小了位置的均方根误差,并提高了速度和加速度的滤波精度,通过Matlab仿真,证明了该算法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号