首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quality of coherent images computed from digital holography or heterodyne array data is sensitive to phase errors of the reference and/or object beams. A number of algorithms exist for correcting phase errors in or very near the hologram plane. In the case of phase errors introduced a nonnegligible distance away from hologram plane, the resulting imagery exhibits anisoplanatism. A feature of coherent imaging is that such phase errors may be corrected by simply propagating the aberrated fields (from the object) from the hologram plane to the plane where the phase errors were introduced and applying the phase-error correction algorithms to the fields in that plane. We present experimental results that demonstrate correction of such anisoplanatic phase errors.  相似文献   

2.
Information-based optical design for binary-valued imagery   总被引:3,自引:0,他引:3  
Chou WC  Neifeld MA  Xuan R 《Applied optics》2000,39(11):1731-1742
Applications such as optical data storage, optical computing, and optical interconnects require optical systems that manipulate binary-valued images. Such an optical system can be viewed as a two-dimensional array of binary communication channels. This perspective is used to motivate the use of pagewise mutual information as a metric for optical system analysis and design. Fresnel propagation and coherent imaging both are analyzed in terms of mutual-information transmission. An information-based space-bandwidth product is used to analyze the trade-off between the numerical aperture and the number of image pixels in a coherent 4f system. We propose a new merit function to facilitate information-based optical system design. Information maximization and bit-error-rate minimization both are possible with the new radially weighted encircled-energy merit function. We demonstrate the use of this new merit function through a design example and show that the information throughput is increased by 8% and the bit-error rate is reduced by 36% when compared with systems designed with traditional criteria.  相似文献   

3.
Ewart P  Smith PG  Williams RB 《Applied optics》1997,36(24):5959-5968
We describe the theory of imaging by degenerate four-wave mixing (DFWM) using a standard diffraction theory of imaging by coherent light. We demonstrate that, even with the phase-conjugating geometry, no aberration correction can be achieved by DFWM imaging. We demonstrate the coherent nature of DFWM image formation using spatially modulated signals generated in flame OH in the phase-conjugating geometry. The intensity distribution in the Fourier plane of a telecentric lens system is shown to be the spatial Fourier transform of the object distribution characteristic of coherent imaging. The brightness of the DFWM signals exceeds that of similar laser-induced fluorescence signals that can be discriminated by restricting the aperture of the imaging system while still allowing a spatial resolution of approximately 70 ?m. DFWM imaging with the forward-folded boxcars geometry is demonstrated and used in a simple referencing scheme to compensate for structure on the images imposed by nonuniformity of the laser beams employed. Images formed in NO are used to illustrate that structure on a scale of less than 100 ?m arising from beam inhomogeneity can be removed by this referencing technique.  相似文献   

4.
Belmonte A 《Applied optics》2006,45(27):7097-7103
The presence of atmospheric refractive turbulence makes it necessary to use simulations of beam propagation to examine the uncertainty added to the differential absorption lidar (DIAL) measurement process of a practical heterodyne lidar. The inherent statistic uncertainty of coherent return fluctuations in ground lidar systems profiling the atmosphere along slant paths with large elevation angles translates into a lessening of accuracy and sensitivity of any practical DIAL measurement. This technique opens the door to consider realistic, nonuniform atmospheric conditions for any DIAL instrument configuration.  相似文献   

5.
6.
Leeb WR  Winzer PJ  Kudielka KH 《Applied optics》1998,37(15):3143-3148
With the aid of the van Cittert-Zernike theorem we develop an analytical expression for the ensemble-averaged heterodyne mixing efficiency in coherent lidar receivers that are looking at a diffuse target that is in the receiver's far field. Our extremely simple and straightforward analysis shows that the dependence of the mixing efficiency on the receive aperture size d(R) first follows a parabolic decrease and later approaches a (d(R))(-2) function. As a consequence, the signal-to-noise ratio does not increase proportionally to the aperture area but saturates. For the system model chosen, the heterodyne mixing efficiency exhibits the same functional dependence on the lidar geometry as the reciprocal of the number of speckle cells within the receive aperture.  相似文献   

7.
8.
We describe a scheme in which a camera is turned into an efficient tunable frequency filter of a few-Hertz bandwidth in an off-axis, heterodyne optical mixing configuration, enabling one to perform parallel, high-resolution coherent spectral imaging. This approach is made possible through the combination of a spatial and temporal modulation of the signal to reject noise contributions. Experimental data obtained with dynamically scattered light by a suspension of particles in Brownian motion is interpreted.  相似文献   

9.
We proposed and developed a novel transillumination laser CT imaging system, using optical fibers, based on the optical heterodyne detection method for biomedical use. The use of optical fibers enables portability and robustness against environmental changes such as varying temperature, air-flow shifts, and unexpected vibrations. In addition, motion-artifact-free images can be obtained with the present system as measurements can be performed with the object fixed. We experimentally investigate in detail the fundamental imaging properties of the system, that has a spatial resolution of 500 /spl mu/m, a dynamic range of approximately 110 dB, and a minimum-detectable-optical power of 10/sup -14/ W as a result of the excellent properties of the heterodyne detection. Based on experimental observations, the proposed system can reconstruct tomographic images of highly scattering objects in the transillumination mode, similar to X-ray CT, at sub-millimeter spatial resolution and can derive quantitative information from the images. Finally, we experimentally demonstrate the first in-situ tomographic images of plants using the fiber-optic-based laser CT system.  相似文献   

10.
Scanning heterodyne holography is an alternative way of capturing three-dimensional information on a scattering or fluorescent object. We analyze the properties of the images obtained by this novel imaging process. We describe the possibility of varying the coherence of the system from a process linear in amplitude to a process linear in intensity by changing the detection mode. We illustrate numerically the properties of the three-dimensional point-spread function of the system and compare it with that of a conventional imaging system with equal numerical aperture. We describe how it is possible, by an appropriate choice of the reconstruction algorithm, to obtain an ideal transfer function equal to unity up to the cutoff frequency, even in the presence of aberrations. Some practical implementation issues are also discussed.  相似文献   

11.
Frehlich R 《Applied optics》1999,38(33):6927-6941
Autonomous beam alignment for coherent Doppler lidar requires accurate information about optical misalignment and optical aberrations. A multielement heterodyne detector provides the required information without a loss in overall system performance. The effects of statistical variations from the random backscattered field (speckle field) are determined with computer simulations for both ground-based operation with a fixed calibration target and for space-based operation with random target backscatter.  相似文献   

12.
A smart-pixel array is a two-dimensional array of optoelectronic devices that combine optical inputs and outputs with electronic processing circuitry. A field-programmable smart-pixel array (FP-SPA) is a smart-pixel array capable of having its electronic functionality dynamically programmed in the field. Such devices could be used in a diverse range of applications, including optical switching, optical digital signal processing, and optical image processing. We describe the design, VLSI implementation, and applications of a first-generation FP-SPA implemented with the 0.8-microm complementary metal-oxide semiconductor-self-electro-optic effect device technology made available through the Lucent Technologies-Advanced Research Projects Agency Cooperative (Lucent/ARPA/COOP) program. We report spice simulations and experimental results of two sample applications: In the first application, we configure this FP-SPA as an array of free-space optical binary switches that can be used in optical multistage networks. In the second, we configure the device as an optoelectronic transceiver for a dynamically reconfigurable free-space intelligent optical backplane called the hyperplane. We also describe the testing setup and the electrical and the optical tests that demonstrate the correct functionality of the fabricated device. Such devices have the potential to reduce significantly the need for custom design and fabrication of application-specific optoelectronic devices in the same manner that field-programmable gate arrays have largely eliminated the need for custom design and fabrication of application-specific gate arrays, except in the most demanding applications.  相似文献   

13.
In recent years, several sonars designed for high-resolution, short-range underwater imaging have been developed. These imaging systems use an acoustic lens to focus the incoming waves on an array of transducers. In this article we describe three prototype systems that use a line-focus or a point-focus lens and operate at a frequency of 300 kHz or 3 MHz. The line-focus lens produces two-dimensional (2D) intensity images, while the point-focus lens produces 3D intensity images. We present sample images taken from moving and stationary platforms, and discuss the techniques used for processing the acoustic backscatter data to reconstruct and visualize the scene. The images, particularly those taken with a point-focus lens, show a remarkable degree of detail. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 377–385, 1997  相似文献   

14.
We demonstrate the use of a switchable circular-to-point converter (SCPC) device based on holographic polymer-dispersed liquid-crystal technology for application in lidar detection and optical telecommunication. A SCPC device converts the Fabry-Perot ring pattern into a single point or an array of points, while an external electrical field on the SCPC deactivates the conversion. Stacking different SCPC elements gives a random optical switch for applications in lidar detection and optical telecommunication. Two types of SCPC designs are analyzed and one is chosen and built for testing.  相似文献   

15.
The front-end hardware complexity of a coherent array imaging system scales with the number of active array elements that are simultaneously used for transmission or reception of signals. Different imaging methods use different numbers of active channels and data collection strategies. Conventional full phased array (FPA) imaging produces the best image quality using all elements for both transmission and reception, and it has high front-end hardware complexity. In contrast, classical synthetic aperture (CSA) imaging only transmits on and receives from a single element at a time, minimizing the hardware complexity but achieving poor image quality. We propose a new coherent array imaging method--phased subarray (PSA) imaging--that performs partial transmit and receive beam-forming using a subset of adjacent elements at each firing step. This method reduces the number of active channels to the number of subarray elements; these channels are multiplexed across the full array and a reduced number of beams are acquired from each subarray. The low-resolution subarray images are laterally upsampled, interpolated, weighted, and coherently summed to form the final high-resolution PSA image. The PSA imaging reduces the complexity of the front-end hardware while achieving image quality approaching that of FPA imaging.  相似文献   

16.
In multiplexed computational imaging schemes, high-resolution images are reconstructed by fusing the information in multiple low-resolution images detected by a two-dimensional array of low-resolution image sensors. The reconstruction procedure assumes a mathematical model for the imaging process that could have generated the low-resolution observations from an unknown high-resolution image. In practical settings, the parameters of the mathematical imaging model are known only approximately and are typically estimated before the reconstruction procedure takes place. Violations to the assumed model, such as inaccurate knowledge of the field of view of the imagers, erroneous estimation of the model parameters, and/or accidental scene or environmental changes can be detrimental to the reconstruction quality, even if they are small in number. We present an adaptive algorithm for robust reconstruction of high-resolution images in multiplexed computational imaging architectures. Using robust M-estimators and incorporating a similarity measure, the proposed scheme adopts an adaptive estimation strategy that effectively deals with violations to the assumed imaging model. Comparisons with nonadaptive reconstruction techniques demonstrate the superior performance of the proposed algorithm in terms of reconstruction quality and robustness.  相似文献   

17.
Coherent differential absorption lidar measurements of CO2   总被引:6,自引:0,他引:6  
A differential absorption lidar has been built to measure CO2 concentration in the atmosphere. The transmitter is a pulsed single-frequency Ho:Tm:YLF laser at a 2.05-microm wavelength. A coherent heterodyne receiver was used to achieve sensitive detection, with the additional capability for wind profiling by a Doppler technique. Signal processing includes an algorithm for power measurement of a heterodyne signal. Results show a precision of the CO2 concentration measurement of 1%-2% 1sigma standard deviation over column lengths ranging from 1.2 to 2.8 km by an average of 1000 pulse pairs. A preliminary assessment of instrument sensitivity was made with an 8-h-long measurement set, along with correlative measurements with an in situ sensor, to determine that a CO2 trend could be detected.  相似文献   

18.
Yoshikado S  Aruga T 《Applied optics》1998,37(24):5631-5639
Techniques for two types of 10-mum band synthetic aperture infrared laser radar using a hypothetical reference point target (RPT) are presented. One is for imaging static objects with a single two-dimensional scanning aperture. Through the simple manipulation of a reference wave phase, a desired image can be obtained merely by the two-dimensional Fourier transformation of the correlator output between the intermediate frequency signals of the reference and object waves. The other, with a one-dimensional aperture array, is for moving objects that pass across the array direction without attitude change. We performed imaging by using a two-dimensional RPT correlation method. We demonstrate the capability of these methods for imaging and evaluate the necessary conditions for signal-to-noise ratio and random phase errors in signal reception through numerical simulations in terms of feasibility.  相似文献   

19.
Feldkhun D  Wagner KH 《Applied optics》2010,49(34):H47-H63
Most far-field optical imaging systems rely on lenses and spatially resolved detection to probe distinct locations on the object. We describe and demonstrate a high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth of field and working distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. We also explore wide-field fluorescence imaging in scattering media by coherence gating. Finally, we present two-dimensional high-resolution tomographic image reconstructions in both scattered and fluoresced light demonstrating a thousandfold improvement in the depth of field compared to conventional lens-based microscopy.  相似文献   

20.
In coherent imaging the object of interest is complex but only its amplitude is to be estimated. The object phase yields nuisance variables and in a proper Bayesian approach it is necessary to obtain a phaseless likelihood function. We investigate a two-dimensional case in which the target object is modelled as a collection of point scatterers having independent random phases. The phaseless likelihood function is determined exactly for a configuration of data samples in a uniformly spaced square array in spatial frequency when the target scatterers are confined to lattice positions of a “matched” spatial array. It is determined approximately when the target scatterers are arbitrarily positioned, at most one per conventional resolution cell. The relation between maximum likelihood and conventional Fourier transform imaging is explored and the feasibility of a CLEAN algorithmic technique in coherent imaging is considered.©1993 John Wiley & Sons Inc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号