首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
Multiwalled carbon nanotube/Polyacrylonitrile (MWNT/PAN) composite nanofibers were prepared by electrospinning technique, whereby functionalized MWNTs (F-MWNTs) and pristine MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced aromatic amine (COC6H4-NH2) groups onto the sidewall. The diameter range of the PAN nanofibers was 400-100 ± 50 nm. The beads formation was also observed when the amounts of MWNTs were increased in the PAN solution. The bead formation in F-MWNT/PAN composite nanofibers was less as compared to P-MWNT/PAN. The MWNTs were embedded within nanofibers and were well oriented along the nanofiber axis, as confirmed by transmission electron microscopy. The mechanical and thermal properties of the PAN nanofibers were improved by the incorporation of MWNTs.  相似文献   

2.
Multiwalled carbon nanotube/nylon-6 nanocomposites (MWNT/nylon-6) were prepared by in situ polymerization, whereby functionalized MWNTs (F-MWNTs) and pristine MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced aromatic amine (COC6H4-NH2) groups onto the side wall. Scanning electron microscopy (SEM) images obtained from the fractured surfaces of the nanocomposites showed that the F-MWNTs in the nylon-6 matrix were well dispersed as compared to those of the P-MWNTs. Both nanocomposites could be electrospun into nanofibers in which the MWNTs were embedded and oriented along the nanofiber axis, as confirmed by transmission electron microscopy. The specific strength and modulus of the MWNTs-reinforced nanofibers increased as compared to those of the neat nylon-6 nanofibers. The crystal structure of the nylon-6 in the MWNT/nylon-6 nanofibers was mostly γ-phase, although that of the MWNT/nylon-6 films, which were prepared by hot-pressing the pellets between two aluminum plates and then quenching them in icy water, was mostly α-phase, indicating that the shear force during electrospinning might favor the γ-phase, similarly to the conventional fiber spinning.  相似文献   

3.
MWNT/nylon 6, 6 composite nanofibers were fabricated using an electrospinning method, and the electrical properties were examined as a function of the filler concentration. Initially, the pristine, purified MWNTs were treated with a 3:1 mixture of concentrated H2SO4/HNO3 to introduce carboxyl groups onto the MWNT surface. The carboxylated MWNTs were then treated with thionyl chloride and an ethylenediamine solution for amide functionalization. FT-IR spectroscopy was used to examine the functionalization of the MWNTs. Nylon 6, 6 is readily soluble in formic acid. Therefore, the amide functionalized MWNTs were dispersed in formic acid. The solution remained stable and uniform for more than 40 h. –NH2 termination of the MWNTs improved the dispersion stability of the MWNTs in formic acid. The MWNTs-suspended in a solution of nylon 6, 6 in formic acid was electrospun to obtain the nanofibers. The electrical properties of the nanofibers were examined as a function of the filler concentration. The results showed that the IV properties of the nanofiber sheet improved with increasing filler concentration.  相似文献   

4.
Xuefen Wang  Kai Zhang  Hao Yu  Yanmo Chen 《Polymer》2008,49(11):2755-2761
Continuous polymer nanofiber yarns were manufactured by self-bundling electrospinning method. Compared with typical electrospinning setup, the special difference in this method was that a grounded needle tip was used to induce the self-bundling of polymer nanofibers at the beginning of electrospinning process. Four kinds of polymer self-bundling yarns, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polyacrylonitrile (PAN), poly(l-lactic acid) (PLLA) and poly(m-phenylene isophthalamide) (PMIA), were prepared successfully by using this self-bundling electrospinning method. Good alignment of polymer nanofibers in self-bundled yarns was confirmed by SEM observation. It was found out that the conductivity of the polymer solution was crucial to achieve stably continuous self-bundled fiber yarns. A possible mechanism for the self-bundling formation of align nanofiber yarn was proposed.  相似文献   

5.
Core-sheath nanofibrous yarns were obtained through electrospinning of polyamide 6 (PA6) solution containing different concentrations of multi-wall carbon nanotubes (MWNTs) as sheath and PVA multifilament as the yarn core. By dissolving PVA, for obtaining conductive hollow nanofibrous PA6/MWNTs yarn, two types of porosity could be obtained including hollow central tube due to the structure of hollow yarn and nano-porous areas embedded in electrospun nanofibers. SEM results showed that the diameters of nanofibers were varying in the range of 103–145 nm obeying MWNTs concentrations and TEM results revealed that the MWNTs were embedded in nanofiber matrix as straight and aligned form. DSC analysis showed that electrospinning process caused the formation of less-ordered γ phase in nanofibers. The electrical conductivity of yarns increased from 10?13 S m?1 to 2.4?×?10?6 S m?1 with increasing the concentration of nanotubes from 0 wt.% to 7 wt.%.  相似文献   

6.
Preparing defect free nanofibers with average diameter well below 100 nm is a challenge to researchers by electrospinning technology. In the present contribution, the electrospinning method was utilized to prepare beadless polycarbonate (PC) nanofibers with average diameter 90 nm using comparatively less toxic and suitable solvents in a convenient way. Spinning PC with pure dichloromethane (DCM) and also with 1:1 mixture of DCM and N,N dimethylformamide under the same spinning parameters with varying PC concentration has very much helped to establish the effect of solvents on fiber formation. This study also proved the impact of solution concentration, viscosity, and solution conductivity on the formation of beadless ultrafine PC fibers and subsequently on the bead density and average fiber diameter. The appropriate proportion of solvents under suitable spinning parameters has helped to minimize the quantity of PC during the formation of bead free nanofibers by electrospinning. The ultrafine, uniform, and beadless morphology of the electrospun PC fibers can be utilized for various nanotechnology advancements. POLYM. ENG. SCI., 59:1799–1809, 2019. © 2019 Society of Plastics Engineers  相似文献   

7.
Sea‐island polyurethane (PU)/polycarbonate (PC) composite nanofibers were obtained through electrospinning of partially miscible PU and PC in 3 : 7 (v/v) N,N‐dimethylformamide (DMF) and tetrahydrofuran (THF) mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were influenced by composition ratio in the binary mixtures. The pure PC nanofiber was brittle and easy to break. With increasing the PU content in the PU/PC composite nanofibers, PU component not only facilitated the electrospinning of PC but improved the mechanical properties of PU/PC nanofibrous mats. In a series of nanofibrous mats with varied PU/PC composition ratios, PU/PC 70/30 showed excellent tensile strength of 9.60 Mpa and Young's modulus of 55 Mpa. After selective removal of PC component in PU/PC composite nanofibers by washing with acetone, the residual PU maintained fiber morphology. However, the residual PU nanofiber became irregular and contained elongated indents and ridges along the fiber surface. PU/PC composite fibers showed sea‐island nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. At PC content below 30%, the PC domains were small and evenly dispersed in the composite nanofibers. As PC content was over 50%, the PC phases became large elongated aggregates dispersed in the composite nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Polycarbonate (PC) nanofibers are prepared using the air blowing‐assisted electrospinning process. The effects of air blowing pressure and PC solution concentration on the physical properties of fibers and the filtration performance of the nanofiber web are investigated. The air blowing‐assisted electrospinning process produces fewer beads and smaller nanofiber diameters compared with those obtained without air blowing. Uniform PC nanofibers with an average fiber diameter of about 0.170 μm are obtained using an applied voltage of 40 kV, an air blowing pressure of 0.3 MPa, a PC solution concentration of 16%, and a tip‐to‐collection‐screen distance (TCD) of 25 cm. The filtration efficiency improvement of the air blowing‐assisted electrospun web can be attributed to the narrow distribution of fiber diameter and small mean flow pore size of the electrospun web. Performance results show that the air blowing‐assisted electrospinning process can be applied to produce PC nanofiber mats with high‐quality filtration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Multiwalled carbon nanotube/polycaprolactone nanocomposites (MWNT/PCL) were prepared by in situ polymerization, whereby functionalized MWNTs (F-MWNTs) and unfunctionalized MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced the aromatic amine (COC6H4-NH2) groups on the side wall. The F-MWNTs were chemically bonded with the PCL chains in the F-MWNT/PCL, as indicated by the appearance of the amide II group in the FT-IR spectrum. The TGA thermograms showed that the F-MWNT/PCL had better thermal stability than PCL and P-MWNT/PCL. The PCL and the nanocomposite nanofibers were prepared by an electrospinning technique. The nanocomposites that contain more than 2 wt% of MWNTs were not able to be electrospun. The bead of the F-MWNT/PCL nanofiber was formed less than that of the P-MWNT/PCL. The nanocomposite nanofibers showed a relatively broader diameter than the pure PCL nanofibers. The MWNTs were embedded within the nanofibers and were well oriented along the axes of the electrospun nanofibers, as confirmed by transmission electron microscopy.  相似文献   

10.
In this research, nanocomposite nanofibrous webs of poly(acrylic acid) (PAA)/multi‐walled carbon nanotubes (MWNTs) were obtained via electrospinning. The effect of MWNTs concentration on the morphology and mechanical properties of PAA/MWNTs nanofibers was investigated by changing the MWNTs content from 0 to 5 wt%. The results showed that average diameter of nanofibers increased with increasing the MWNTs concentration and presence of MWNTs led to the enhancement of mechanical properties. Also, the results revealed that the strength, modulus, and elongation at break of samples increased 3.22, 2.70, and 4.27 fold, respectively, after adding 3 wt% of MWNTs. In addition, the effect of rotating speed of collector on the orientation of PAA nanofibers and its effect on mechanical properties was investigated. Scanning electron microscopy (SEM) studies demonstrated that the degree of nanofibers orientation increased with the augmentation of drum speed to 25 rps. Moreover, the average nanofibers diameter decreased with the increase of drum speed. Improvement of nanofiber orientation resulted in superior mechanical properties that is, higher strength and modulus of aligned nanofiber layers were obtained in comparison to nonaligned layers (12.6 and 26.6 fold, respectively). POLYM. COMPOS., 37:3149–3159, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
A ZnO nanofiber field-effect transistor (FET) was assembled by electrospinning. Uniform ZnO nanofibers with a diameter of ∼70 nm and length over 100 μm were first synthesized by electrospinning. Using two paralleled electrodes as fiber collectors, we have successfully placed a single ZnO nanofiber on the electrodes, and an FET device was fabricated based on the assembled nanofiber. An electrical transport measurement was conducted on the FET device, showing that ZnO nanofibers are intrinsic n- type semiconductors. The present findings demonstrate that electrospinning can potentially be used as a straightforward and cost-effective means for the assembly of one-dimensional nanostuctures for building integrated nanodevices for various applications, such as transistors, sensors, diodes, and photodetectors.  相似文献   

12.
A nanofiber was obtained by electrospinning of “dialdehyde cellulose” (periodate-oxidized cellulose, DAC) and polyvinyl alcohol (PVA), using only water as the solvent. Celluloses of four different origins were fully oxidized with sodium periodate to water-soluble DAC. Aqueous solution of DAC showed inadequate spinnability regardless of the polymer concentration and the electrospinning conditions used. Addition of PVA improved the solution's viscoelasticity and, consequently, the solution's spinnability. We examined the effects of DAC/PVA composition and electrospinning parameters on fiber morphology. Highly homogeneous nanofibers were prepared from 1:1 up to 2:1 (weight) DAC/PVA blends while samples of lower viscosity or higher relative DAC contents resulted in continuous, beaded fiber networks. Characterization of the electrospun fabrics revealed a highly crosslinked DAC structure reinforced with PVA, strongly interacting through hemiacetal bonds and hydrogen bonding. Fluorescence labeling confirmed the presence of reactive aldehyde functionalities in the electrospun web. The versatile properties of DAC as reactive material can now be imparted on electrospun fiber and nanofiber material – which was not possible so far –further widening the application scope of this interesting cellulose derivative.  相似文献   

13.
In recent years, nanofiber production via electrospinning has gained importance because of superior properties of submicron fibers. In this study, the effect of molecular weight, concentration of solution, electric conductivity, surface tension and solution viscosity of the polymer solution on the roller electrospinning of PVA nanofibers was investigated. One nonspinnable and two spinnable polymer species were studied. The effect of polymer concentration and solution viscosity on the electrospinning process throughput, fiber diameters and quality of nanofiber layers was measured. According to the results there is a significant difference in rheological behavior of nonspinnable and spinnable polymer solutions. Electric conductivity and surface tension of the solutions did not influence both throughput and fiber diameter significantly. Whereas molecular weight has an important effect on the spinnability, concentration of the solutions has not. On the contrary, concentration influences the process throughput considerably and properties of nanofibers and nanofiber layers to some extent. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
Generally, polymer solution or sol–gel is used to produce electrospun nanofibers via the electrospinning technique. In the utilized sol–gel, the metallic precursor should be soluble in a proper solvent since it has to hydrolyze and polycondensate in the final solution; this strategy straitens the applications of the electrospinning process and limits the category of the electrospinnable materials. In this study, we are discussing electrospinning of a colloidal solution process as an alternative strategy. We have utilized many solid nanopowders and different polymers as well. All the examined colloids have been successfully electrospun. According to the SEM and FE SEM analyses for the obtained nanofiber mats, the polymeric nanofibers could imprison the small nanoparticles; however, the big size ones were observed attaching the nanofiber mats. Successfully, the proposed strategy could be exploited to prepare polymeric nanofibers incorporating metal nanoparticles which might have interesting properties compared with the pristine. For instance, PCL/Ti nanofiber mats exhibited good bioactivity compared with pristine PCL. The proposed strategy can be considered as an innovated methodology to prepare a new class of the electrospun nanofiber mats which cannot be obtained by the conventional electrospinning technique.  相似文献   

15.
Zhiqiang Su  Jingfeng Li  Qing Li  Tongyang Ni  Gang Wei 《Carbon》2012,50(15):5605-5617
An improved electrospinning technique was used to produce poly(ethylene oxide) (PEO) and PEO-multi-walled carbon nanotube (MWCNT) hybrid nanofibers. By this technique, both the orientation of MWCNTs in the electrospun PEO nanofibers and the orientation of electrospun PEO–MWCNT hybrid nanofibers can be controlled. The morphologies of the as-spun PEO–MWCNT hybrid nanofibers and the dispersion and orientation of MWCNTs in the fiber matrix were observed by scanning and transmission electron microscopy. The effect of electrospinning process and the incorporation of MWCNTs on the chain conformation and semicrystalline framework of PEO were examined by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and differential scanning calorimetry, and compared with pure PEO and PEO–MWCNT films prepared by casting. Finally, to investigate how the fiber assemblies affect the mechanical and electrical properties of the hybrid materials, tensile testing and impedance analysis were performed on randomly oriented, uniaxially and biaxially oriented PEO–MWCNT hybrid nanofiber mats. The results indicated that both the uniaxially and biaxially oriented assembled hybrid materials have better tensile strength, modulus, and electrical conductivity compared with random nanofibers.  相似文献   

16.
Electrospinning is a direct, continuous, and useful technique to prepare nanofiber by applying electrostatic forces. In this study, poly(lactic‐co‐glycolic acid)/poly(ethylene glycol) (PLGA/PEG) nanofiber mats were prepared, and electrospinning process was optimized to obtain appropriate fiber diameter and hydrophilicity for anti‐adhesion application. Optimization of applied voltage, PEG content, and feeding rate was investigated using response surface methodology. A total of 15 trials were designed to optimize the parameters. Fiber diameter was measured using scanning electron microscopy. Individual and interactive effects of the solution properties were determined. Moreover, the adequacy of the models was verified by validation experiments. For anti‐adhesion test, a nanofiber mat was produced based on the suggested optimum electrospinning conditions. Results showed that optimum fiber diameters were obtained using 7.5% PEG content, applied voltage of 19 kV, and flow rate of 3 mL/h. Experimental results were in good agreement with the predicted fiber diameters. Furthermore, a rat model of sidewall defect‐cecum abrasion was employed to investigate the efficacy of PEG/PLGA in preventing postoperative peritoneal adhesions. Hence, this study provides an overview on the fabrication of PLGA/PEG nanofibers with targeted diameter, which may be used in anti‐adhesion. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46282.  相似文献   

17.
Carbon nanotube (CNT ) reinforced composite materials is a hot research issue now , but CNT/polymer composite nano-scale fibers still cannot be obtained readily, not mention to successfully prepare continuous CNTs/polymer composite nano-scale fiber filaments manufactured by electrospinning. In this paper, continuous filaments constructed of nano-scale PA6/MWNTs fibers in single-axis orientation were obtained by an improved wet-electrospinning technique. The effects of the concentrations of MWNTs, spinning speed and post-drawing on the mechanical properties of PA6/MWNTs nanofiber filaments were studied. The results show that when the concentrations of MWNTs is below 0.8 wt%, the increase of MWNTs content enhances the Young’s modules and breaking stress but reduces the breaking strain, while the breaking stress decreases when the MWNTs concentration exceeds 0.8 wt%. The Young’s modules and breaking stress increased as the spinning speed raised at the range of 1.8–9.0 m/min, but declined when the speed exceeded 9.0 m/min. The mechanical properties of the as-spun filaments can be improved by either dry or wet post-drawing, and the breaking stress of the wet post-drawn filaments was improved 2.64 times while that of the dry post-drawn filaments 2.28 times.  相似文献   

18.
Electrospun chitosan nanofiber mats have been obtained using chitosan solutions in a mixture of trifluoroacetic acid and dichloromethane. The relationship between processing parameters (solvent composition, polymer concentration in the solution, feeding rate, applied voltage, traveling distance between the needle, and the collector) and fiber morphology was studied. Taguchi's methodology was followed to determine which parameters have the strongest influence on mean fiber diameter and fiber homogeneity. Chitosan nanofibers obtained with this procedure were water soluble due to the protonation of amine side groups but were successfully neutralized by immersion in calcium carbonate solutions. It was established that fiber diameter is mainly determined by the solution concentration and the distance from the needle to the collector while other parameters have less influence. The set of parameters that produce the thinnest fibers were a concentration of 8 wt%, a TFA/DCM ratio of 80:20 (v/v%), a voltage of 30 kV, a flow rate of 6.0 mL/h, a gap distance of 10 cm, using a needle diameter of 0.5, allowing to produce randomly oriented mats with a mean fiber thickness of 66 nm. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
采用静电纺丝技术制备了聚乙烯吡咯烷酮/二苯基丙氨酸(PVP/FF)复合纳米纤维;考察了FF含量、纺丝液流速对电纺纤维形貌及其平均直径的影响;利用扫描电镜对纤维表面形态进行了观察,通过X射线衍射和热重分析考察了纳米纤维中FF的存在状态及纳米纤维的热稳定性;通过全反射红外光谱分析了FF与PVP之间的相互作用。结果表明:当复合纤维中FF质量分数小于2%时,共混溶液的可纺性较好;复合纳米纤维直径随着FF含量的增大而先减小后增加,当FF的质量分数增加到5%时,复合纳米纤维的直径也相应增大;随着纺丝液流速的增大,复合纳米纤维的直径有逐渐增大的趋势,当纺丝液流速在0.2~0.6mL/h时,复合纳米纤维形貌较佳,纤维直径分布均匀,表面光滑无颗粒;PVP/FF复合纳米纤维中FF与PVP发生复合作用处于分散的无定形状态,分解温度范围变宽;FF与PVP之间具有良好的相容性。  相似文献   

20.
In this study, it was aimed to prepare polyvinyl borate/polyvinyl alcohol blend nanofibers by electrospinning process. Polyvinyl borate was synthesized by the condensation reaction of polyvinyl alcohol and boric acid. Polyvinyl borate itself was not suitable for electrospinning process. To improve fiber formation capability, polyvinyl borate was blended with polyvinyl alcohol before electrospinning process. A series of nanofibers with various polyvinyl borate concentrations in polyvinyl alcohol were prepared. Homogeneous and highly porous mat containing 100–250 nm diameter nanofibers were obtained by electrospinning process. According to the FTIR results, boron atoms were found to be integrated into the polymer network. There is not any significant effect of polyvinyl borate content on fiber morphologies according to SEM images. The blend composition with the highest polyvinyl borate content was found to be suitable for thermally stable nanofiber formation according to the TGA results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号