首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
A procedure is proposed for the evaluation of those uncertainty components of a single cutting force measurement in turning that are related to the contributions of the dynamometer calibration and the cutting process itself. Based on an empirical model including errors from both sources, the uncertainty for a single measurement of cutting force is presented, and expressions for the expected uncertainty vs. cutting parameters are proposed. This approach gives the possibility of evaluating cutting force uncertainty components in turning, for a defined range of cutting parameters, based on few experiments.  相似文献   

2.
A grey prediction fuzzy controller for constant cutting force in turning   总被引:10,自引:0,他引:10  
Constant force control is gradually becoming an important technique in the modern manufacturing process. Especially, constant cutting force control is a useful approach in increasing the metal removal rate and the tool life for turning systems. However, turning systems generally have non-linear with uncertainty dynamic characteristics. Designing a model-based controller for constant cutting force control is difficult because an accurate mathematical model in the turning system is hard to establish. Hence, this study employed a model-free fuzzy controller to control the turning system in order to achieve constant cutting force control. Nevertheless, the design of the traditional fuzzy controller (TFC) presents difficulties in finding control rules and selecting an appropriate membership function. To solve this problem, a grey-theory algorithm was introduced into the TFC to predict the next output error of the system and the error change, rather than the current output error of the system and the current error change, as input variables of the TFC. This design of the grey prediction fuzzy controller (GPFC) cannot only simplify the TFC design, but also achieves the desired result in TFC implementation. To confirm the applicability of the proposed intelligent controllers, this work retrofitted an old lathe for a turning system to evaluate the feasibility of constant cutting force control. The GPFC has better control performance in constant cutting force control than does the TFC, as verified in experimental results.  相似文献   

3.
Accurate and reliable measurement of cutting forces in turning is essential for tool geometry, tool trajectory and cutting parameters optimization, as well as for tool condition monitoring and machinabilty testing. In this work, an innovative dynamometer for triaxial cutting force measurement in turning, specifically designed to be applied at a milling-turning CNC machine tool endowed with an indexable head, is presented. The device is based on a piezoelectric force ring integrated into a commercial toolshank, and its modular design allows the easy change of the cutting insert without altering sensor preload. The prototype device was assembled and experimentally tested by means of static calibration and dynamic identification, which evidenced good static and dynamic characteristics. Eventually, the sensor was tested in operating conditions by machining a benchmark workpiece.  相似文献   

4.
This article presents a method for measuring individual cutting forces during bandsawing. Methods for detecting errors in cutting edge positions, tool dynamics during machining and geometry changes due to wear have also been developed. The experimental studies that we have conducted show that the cutting forces vary during the tool engagement. These variations in force were then quantified using a previously developed cutting force model for multi-tooth cutting processes including effects of positional errors, tool dynamics and wear.  相似文献   

5.
There have been many research works for the indirect cutting force measurement in machining process, which deal with the case of one-axis cutting process. In multi-axis cutting process, the main difficulties to estimate the cutting forces occur when the feed direction is reversed. This paper presents the indirect cutting force measurement method in contour NC milling processes by using current signals of servo motors. A Kalman filter disturbance observer and an artificial neural network (ANN) system are suggested. A Kalman filter disturbance observer is implemented by using the dynamic model of the feed drive servo system, and each of the external load torques to the x and y-axis servo motors of a horizontal machining center is estimated. An ANN system is also implemented with a training set of experimental cutting data to measure cutting force indirectly. The input variables of the ANN system are the motor currents and the feedrates of x and y-axis servo motors, and output variable is the cutting force of each axis. A series of experimental works on the circular interpolated contour milling process with the path of a complete circle has been performed. It is concluded that by comparing the Kalman filter disturbance observer and the ANN system with a dynamometer measuring cutting force directly, the ANN system has a better performance.  相似文献   

6.
杨帆  马大为  乐贵高  薛铮 《机床与液压》2012,40(13):52-54,58
考虑交流伺服系统中非线性和不确定因素的影响,设计了一种新型的自适应滑模控制策略。该控制方法通过自适应律调节滑模增益达到克服系统参数摄动和外部扰动的目的,同时根据伺服系统数学模型,设计了控制律并证明了其稳定性。不同载荷条件下的仿真与实验研究表明,该控制策略能保证系统具有很好的控制输入特性与动态性能。  相似文献   

7.
A technique for precision turning of shafts on conventional CNC turning centers is presented. The shaft is semi-turned on a conventional CNC lathe. The precision finish turning operation is delivered by a piezoelectric based fast tool servo which is mounted on the same CNC lathe's turret. The precision tool tip motion is delivered by a proposed sliding mode controller which is robust to changes in the cutting process and hysteresis in the piezo actuator. Sliding mode controller is also quick to compensate the cutting force disturbances, and keeps the tool tip at the desired location within the displacement measurement sensor resolution (±0.1 μm). The fast tool servo system is packaged in a PC, and its effectiveness is demonstrated on a bearing location turning.  相似文献   

8.
In this paper, a surface topography simulation model is established to simulate the surface finish profile generated after a turning operation. The surface topography simulation model incorporates the effects of the relative motion between the cutting tool and the workpiece with the effects of tool geometry to simulate the resultant surface geometry. It is experimentally shown that the surface topography simulation model can properly simulate the surface profile generated by turning operations. The surface topography simulation model is used to study the effects of vibrations on the surface finish profile. It is found that the vibration frequency ratio is a more important vibration parameter than the vibration frequency on the characterization of the surface finish profile. The vibration frequency ratio is the ratio between the vibration frequency and the spindle rotational speed.  相似文献   

9.
Real-time generation and control of cutter path for 5-axis CNC machining   总被引:3,自引:0,他引:3  
This paper presents a new approach to real-time generation and control of the cutter path for 5-axis machining applications. The cutter path generation method comprises real-time algorithms for cutter-contact path interpolation, cutter offsetting, and coordinate conversion. In addition, a global feedback loop is closed by the CNC interpolator so as to augment the controlled accuracy in practical cutter path generation. An error compensation algorithm and a feedrate adaptation algorithm for the control loop are developed, respectively.  相似文献   

10.
Fracture and wrinkling are two primary failure modes in deep drawing of sheet metal parts. Previous studies showed that properly selected variable blank holder force (BHF) profile, i.e. variation of BHF with punch stroke, can eliminate these failures to draw deeper parts. In this study, an adaptive simulation strategy was developed to adjust the magnitude of the BHF continuously during the simulation process. Thus, a BHF profile is predicted in a single process simulation run and the computation time is reduced. The proposed strategy has been applied successfully to two conical cup drawing operations. The predictions have been compared with experiments and the results indicate that the adaptive simulation strategy can also be used to improve the drawing process for forming non-symmetric parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号