首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Spontaneous aggregation of misfolded proteins typically results in the formation of morphologically and structurally different amyloid fibrils, protein aggregates that are strongly associated with various neurodegenerative disorders. Elucidation of the structural organization of amyloid aggregates is crucial to understanding their role in the onset and progression of these diseases. Using atomic force microscopy–infrared spectroscopy (AFM-IR), we investigated the structural organization of insulin fibrils. We found that insulin aggregation results in the formation of two structurally different fibril polymorphs. One polymorph has a β-sheet core surrounded by primarily unordered protein secondary structure. This polymorph has β-sheet-rich surface, whereas the surface of the other fibril polymorph is primarily composed of unordered protein. Using AFM-IR, we also revealed the structural organization of the insulin oligomers. Finally, we discovered a new pathway for amyloid fibril formation that is based on a fusion of several oligomers into a single fibril structure.  相似文献   

2.
Atomic force microscopy (AFM) and photon correlation spectroscopy (PCS) were used for monitoring of the procedure for cytochrome CYP11A1 monomerization in solution without phospholipids. It was shown that the incubation of 100 μM CYP11A1 with 12% Emulgen 913 in 50 mM KP, pH 7.4, for 10 min at T = 22°C leads to dissociation of hemoprotein aggregates to monomers with the monomerization degree of (82 ± 4)%. Following the monomerization procedure, CYP11A1 remained functionally active. AFM was employed to detect and visualize the isolated proteins as well as complexes formed between the components of the cytochrome CYP11A1-dependent steroid hydroxylase system. Both Ad and AdR were present in solution as monomers. The typical heights of the monomeric AdR, Ad and CYP11A1 images were measured by AFM and were found to correspond to the sizes 1.6 ± 0.2 nm, 1.0 ± 0.2 nm and 1.8 ± 0.2 nm, respectively. The binary Ad/AdR and AdR/CYP11A1mon complexes with the heights 2.2 ± 0.2 nm and 2.8 ± 0.2 nm, respectively, were registered by use of AFM. The Ad/CYP11A1mon complex formation reaction was kinetically characterized based on optical biosensor data. In addition, the ternary AdR/Ad/CYP11A1 complexes with a typical height of 4 ± 1 nm were AFM registered.  相似文献   

3.
Antibody-based molecular recognition plays a central role in today's life sciences, ranging from immunoassays to molecular imaging and antibody-based therapeutics. Control over antibody activity by using external triggers such as light could further increase the specificity of antibody-based targeting. Here we present bivalent peptide–DNA ligands containing photocleavable linkers as a noncovalent approach by which to allow photoactivation of antibody activity. Light-triggered cleavage of the 3-amino-3-(2-nitrophenyl)propionic acid peptide linker converted the high-affinity bivalent peptide–DNA lock into weakly binding monovalent ligands, effectively restoring antibody targeting of cell-surface receptors. In this work, a proof of principle was provided with an anti-hemagglutinin antibody, but the molecular design of the lock is generic and applicable to any monoclonal antibody for which an epitope or mimotope of sufficient affinity is available.  相似文献   

4.
The regulation of DNAzyme activity is an important problem for its in vivo applications. We achieved photochemical regulation of DNAzyme activity by using reversible DNA photo-crosslinking of 3-cyanovinylcarbazole (CNVK). The ODN containing CNVK photo-crosslinked to a pyrimidine base in the complementary strand after a few seconds of photoirradiation, and its photoadduct was split by photoirradiation of another wavelength. The activity of photo-crosslinked DNAzyme with CNVK was completely inhibited (OFF state). In contrast, after 312 nm irradiation, DNAzyme activity was recovered upon addition of a substrate strand (ON state). In addition, the photo-crosslinked DNAzyme is prone to enzymatic digestion by exonuclease. This photochemical OFF to ON switching with reversible DNA photo-crosslinking was regulated at the desired time and position; therefore, it might be possible to use it for in vivo application.  相似文献   

5.
《分离科学与技术》2012,47(12):2555-2565
Abstract

In this work, an on‐line system for preconcentration and determination of copper, iron, nickel, and zinc at µg L?1 level by flame atomic absorption spectrometry (FAAS) has been developed. Amberlite XAD‐4 functionalized with 3,4‐dihydroxybenzoic acid packed in a minicolumn was used as metal sorbent. The retained metals can be quickly eluted from sorbent material, with the eluent stream consisting of hydrochloric acid solution, directly to the nebulizer burner system of the FAAS. Analytical parameters were evaluated and the results demonstrated that all studied metals can be determined, using borate buffer to adjust the sample pH at 8.0. The results showed that the proposed method is simple and rapid. The limits of detection were estimated as 2.3, 5.0, 7.8, and 0.1 µg L?1 for copper, iron, nickel, and zinc, respectively, using a preconcentration time of 60 s and a sample flow rate of 5.5 mL min?1. Enrichment factors of 22, 15, 12, and 54 and coefficients of variations of 3.5, 4.4, 4.4, and 3.2% were obtained in the determination of copper, iron, nickel, and zinc, respectively. The system presented an analytical throughput of 10 samples per hour and was successfully applied in the determination of metals in ethanol fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号