首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
提出了一种基于耶路撒冷十字单元的相位梯度表面, 并将该表面加载到缝隙阵列天线表面.通过利用该表面将空间波(propagating wave, PW)转化为表面波(surface wave, SW)及奇异反射特性, 天线可以在很宽的频带内实现显著的雷达散射截面(radar cross section reduction, RCS)减缩.与参考天线相比, 设计天线在TE和TM两种极化波垂直和斜入射状态下均在6~18 GHz频带范围内实现了单站RCS减缩, 并且在9.5 GHz处的最大减缩量达到20 dB.与传统的天线RCS减缩技术相比, 该方法可以在保证天线原本辐射性能的基础上同时实现天线带内和带外的RCS减缩.  相似文献   

2.
该文设计了一种基于超表面(MS)的低雷达散射截面(RCS)宽频贴片阵列天线。该天线由工作在不同频段的两种开缝贴片天线组成2×4的八元阵,以此实现天线小型化并扩展其带宽,根据相位相消原理,将两种人工磁导体(AMC)以棋盘布阵的方式组成超表面加载到天线阵周围,使其具有低RCS特性。实测和仿真结果表明:加载超表面后,天线工作带宽由5.7~6.2 GHz扩展为5.6~6.6 GHz,相对带宽增大1倍,辐射特性基本保持不变;当平面波垂直入射时,天线单站RCS减缩效果明显,其中,X极化波下3 dB减缩带宽为5.3~7.0 GHz,最大减缩量达31 dB,Y极化波下3 dB减缩带宽为5.8~6.9 GHz。  相似文献   

3.
该文利用电磁超表面与微带天线的结构高度相似性,设计了2种辐射特性几乎一致且具有反射相位差异的超表面天线,通过将2种天线单元进行棋盘布阵,在x极化波和y极化波照射下分别利用相位相消及匹配负载吸收实现了天线阵带内散射能量的抑制。实测与仿真结果表明:该超表面天线工作于6.0~8.5 GHz。x极化波垂直入射时天线单站RCS减缩6 dB带宽为6.2~10.5 GHz,最大减缩量达21.07 dB。y极化波垂直入射时天线的带内RCS减缩依然能达到3 dB以上。且实测与仿真结果吻合良好。该设计方法为实现天线阵带内RCS减缩提供了新的设计思路。  相似文献   

4.
针对微带天线的带内和带外雷达散射截面(radar cross section,RCS)减缩问题,提出了一种加载组合梯度超表面的低RCS天线设计方法,以解决传统RCS减缩技术存在的带宽受限和设计复杂问题.该方法将8个梯度方向间隔45°的梯度超单元依次排列在辐射贴片的周围,由于梯度超单元的奇异反射特性,散射场将会被重新分布至各个方向,表现出漫反射效果,从而实现单站和双站的RCS减缩.仿真和测试结果表明:加载组合梯度超表面前后微带天线的RCS在7.2~18.4 GHz减缩了5 dB以上,且微带天线原有的辐射特性基本保持不变.该设计方法具有设计简单、超宽带工作的特点.  相似文献   

5.
该文设计了一种工作于X波段的平面印刷磁电偶极子天线,并设计了一种加载集总电阻的宽入射角、极化不敏感、宽频带吸波体(WBMA)。当平面波垂直入射时,吸波体在7.2~12.6 GHz范围内的吸波率大于90%,入射角增加至45时仍能在X波段保持90%以上的吸波率。通过将WBMA加载在天线四周,实现了天线雷达散射截面(RCS)的大幅缩减。实测和仿真结果表明:不同极化波垂直入射时,天线单站RCS减缩3 dB带宽为6.6~14.4 GHz,最大减缩量达23.8 dB。中心频点10 GHz处,TE极化波照射时,双站RCS能实现90角域内的减缩,TM极化波照射时,在35角域内实现了减缩,同时天线辐射性能几乎保持不变。  相似文献   

6.
提出了一种基于单层透波型阻抗超表面(Transparent Resistive Metasurface, TRM)的电大尺寸天线阵RCS减缩方法。该超表面在垂直极化10 GHz处产生低插损透波窗口,而在其他频点和极化条件下作为有耗阻抗表面,天线阵列在带外频段近似全反射,可以作为接地面实现宽带吸波的RCS减缩。采用国产电磁仿真软件EastWave对"电大尺寸+精细结构"的"天线阵+超表面阵列"进行了全波仿真分析,评估单层透波阻抗超表面对电大尺寸天线阵的RCS减缩及辐射性能的影响。仿真结果表明,在天线阵增益损耗小于1 dB条件下实现同极化下带外频段和交叉极化下全频带的宽带吸波,为大型天线阵隐身设计提供了技术支撑。  相似文献   

7.
针对天线隐身问题,设计了一款宽带极化转换超表面加载的缝隙阵列天线。超表面采用渐变L型枝节的设计方法,其极化转换比大于0.9的工作带宽为79.2%。为缩减一款2×2的H形缝隙阵列天线的雷达散射截面(Radar Cross Section, RCS),将超表面结构加载到该天线上方。对阵列天线及超表面天线分别进行了仿真和测试,超表面天线的辐射特性保持良好,同时其RCS对于垂直入射方向上的x和y极化波分别在13.4~30.5 GHz和13.1~30.7 GHz得到10.0 dB的缩减。  相似文献   

8.
王莹  杨晓庆 《电声技术》2023,(1):89-92+96
近年来,电磁超材料因具有灵活调控电磁波的能力而被广泛应用在天线雷达散射截面(Radar Cross section,RCS)减缩设计中。实现天线RCS值减缩设计的难点是在不影响天线自身辐射特性的条件下,有效拓展天线RCS值减缩带宽。为此,基于超材料的完美吸波电磁特性,通过多个方环形结构以及加载多个电阻实现宽频带设计,设计一个超宽频带单层超材料吸波单元,将其应用在天线低RCS值设计中,设计一款适用于无人机通信频段的低RCS微带天线。通过仿真测试对设计天线和参考天线进行对比,结果表明,设计的天线在保证自身辐射特性不变的情况下,能够在6.5~18 GHz频带内实现大于10 dB的减缩效果,为该领域的研究提供了一种新方法。  相似文献   

9.
超表面由于其灵活的电磁波调控能力而受到广泛关注,基于其在雷达散射截面(radar cross section, RCS)减缩设计中受限于工作频带单一、设计通用性低的问题,文中提出一种新型的叠层型超表面设计方法,来灵活实现双宽带的RCS减缩. 首先设计了工作在两个频带且具有极化旋转特性的超表面结构及低通频率选择表面(frequency selective surface, FSS),并将其与两个极化旋转超表面相集成,形成了具有双频带极化旋转特性的超表面结构;然后基于极化相消原理,将该阵列进行旋转排布,形成2×2的阵列结构,以实现在6.6~12.7 GHz和27.8~38.1 GHz两个频带内?10 dB的RCS减缩. 对所设计的超表面结构进行实物加工,实测结果与仿真结果对比吻合良好,从而验证了双带RCS减缩的良好特性.  相似文献   

10.
刘英  于旭  龚书喜 《电波科学学报》2016,31(6):1107-1112
提出了一种利用环形金属结构实现低雷达散射截面(Radar Cross Section, RCS)的微带贴片天线.该结构由几个金属同心环排布而成.对典型的微带天线, 通过在辐射贴片周围加载该环形结构, 天线可以实现明显的宽带RCS减缩效果.实验结果表明:与参考天线相比, 对于X极化垂直入射波以及Y极化垂直入射波在6~25 GHz范围内都有减缩效果, 天线在12.8 GHz时可以达到30 dB的减缩量, 同时天线的辐射特性得到保持.  相似文献   

11.
利用棋盘型人工磁导体(AMC)结构研究微带天线RCS的缩减技术。给出AMC耶路撒冷十字结构的等效电路模型,据此设计两个不同的AMC耶路撒冷十字,使其产生180°的反射相位差,并组成棋盘型结构。当平面波垂直入射到加载棋盘型AMC结构的微带天线表面时,实现了反射波的相消干涉。在天线带内和带外12~24 GHz都明显降低了微带天线的RCS,最大可以达到36 dB的缩减,并且天线的辐射特性基本保持不变。  相似文献   

12.
基于人工磁导体(AMC)的工作机理,设计了一款工作频率在X波段的低雷达散射截面(RCS)微带天线。设计了一种AMC单元,经XY极化波垂直入射在8.6~14.6 GHz的频带范围内,获得180°±37°的反射相位差;将其进行正交排列组成AMC棋盘结构的反射屏,反射屏中AMC阵列块由3×3的单元组成。仿真结果显示,该反射屏较相同尺寸的PEC板具有更小的后向RCS,将此AMC结构与工作频点为10 GHz的微带天线共面排布,在保持原有天线良好辐射性能和剖面高度的同时,在8.4~14.8 GHz的频率范围内对两种极化波垂直入射实现了不低于7.5 dB的RCS缩减量。  相似文献   

13.
雷达散射截面(radar cross section, RCS)是雷达探测技术、隐身和反隐身技术中表征目标可识别特性的重要参数. 对隐身平台RCS的贡献来自平台上的天线,因此降低天线系统的RCS成为目前隐身技术中的一个关键技术课题,当前的解决方案在降低RCS的同时会影响天线的辐射性能. 本文将极化转换超表面(polarization conversion metasurfaces, PCM)和法布里-珀罗(Fabry-Perot)谐振腔天线有效结合,设计了一款双频带RCS缩减和增益提升天线. 结果表明,该天线在4~9 GHz和12~15 GHz两个频段的RCS最大降低了15 dBsm. 此外,Fabry-Perot天线的增益相较馈源天线提高了7 dBi. 说明提出的天线具有增益高、RCS低的特点,可为Fabry-Perot谐振腔天线的设计提供新颖的思路.  相似文献   

14.
In this work, a novel Circularly Polarized (CP) slot antenna is proposed for low RCS and high gain applications. The proposed antenna is designed in two phases. Initially, a metasurface is designed, which is composed of two similar artificial magnetic conductor (AMC) unit cells arranged orthogonally in chessboard-like configuration for broadband RCS reduction. Then, the CP slot antenna is designed by placing dual SRR on the backside of the slot for impedance matching and to achieve circular polarization. Detailed analysis is conducted to investigate the performance of metasurface loaded CP slot antenna. The proposed antenna shows 10 dB RCS reduction over the bandwidth of 41.3% at boresight direction compared to CP slot antenna. The maximum in-band and out-of-band RCS reduction achieved is 24 dB and 20 dB, respectively. The maximum gain of the antenna is also increased by 2.7 dB as a result of parasitic radiation of the metasurface and an improvement in overall performance of the antenna is observed by the employment of metasurface. Measured results of the fabricated prototype are in good agreement with the simulated results.  相似文献   

15.
设计了一款具有吸波/透波双重特性的超表面,并将其用于微带天线的覆层,实现天线雷达散射截面(radar cross section, RCS)的宽带减缩. 将传统的结构性吸波材料金属单元用氮化钽材料置换,提升了吸波带宽. 同时,将吸波材料与频率选择表面相结合,实现了覆层对于不同来波方向的电磁波分别呈现吸波/透波两种截然不同的电磁特性. 将覆层置于天线上方,当天线工作时,天线辐射的电磁波可以完美穿过覆层,因此对于天线的辐射特性不会造成影响. 当雷达波照射至天线时,覆层所呈现的宽带吸波特性可最大程度降低天线的RCS. 仿真结果表明:使用本文所设计的吸波/透波超表面作为天线覆层时,天线的辐射特性几乎未发生变化;而天线的单站RCS最大减缩量可达20 dB以上,减缩带宽可达5~19 GHz;同时,天线的单、双站RCS在较宽的角度范围内也得到明显的缩减.  相似文献   

16.
该文设计了两种人工磁导体(AMC)单元,在8~20 GHz的超宽频带内,两种AMC结构能够实现180°±37° 的反射相位差,将这两种单元组成棋盘结构时,能够实现入射电磁波的散射场相消,从而在超宽的频带内实现棋盘表面法向雷达散射截面(RCS)的显著减缩。同时,利用超表面天线的概念,设计馈电网络,将设计的AMC结构用做天线,仿真发现在9.08~10.30 GHz的范围内,天线的S11小于–10 dB,可以实现天线的有效辐射。实测结果和仿真吻合较好,因此该文的棋盘结构可以实现具有RCS减缩特性的天线设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号