共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
一种改进的 BP 神经网络算法与应用 总被引:3,自引:0,他引:3
针对传统 BP 算法存在的收敛速度过慢、易陷入局部极小、缺乏统一的理论指导网络结构设计的缺点,分析了一般的改进算法在神经网络优化过程中存在的问题,从蚁群算法和 BP 算法融合的角度上,并引入了放大因子,提出一种综合改进的 BP 算法.该算法引入放大因子改善 BP 算法易陷入局部极小的情况,结合蚁群算法用于指导网络结构设计,并极大地改善了收敛速度过慢的问题.最后,将改进的 BP 算法与传统 BP 算法进行应用于煤矿瓦斯预测.通过对实验结果的分析,从时间和正确率上都表明改进的 BP 算法要优于传统的 BP 算法 相似文献
5.
6.
基于神经网络的人口总量预测 总被引:4,自引:0,他引:4
本文提出了一种基于神经网络的新的人口总量的预测方法,仿真结果表明:基于神经网络的预测方法优于传统的人口预测方法,为神经网络方法在人口预测领域的应用作了有益的尝试。 相似文献
7.
针对网络输入信息复杂多变,固定的 BP(Back-Propagation)网络结构难以发挥其优势的情况,提出了结合信息融合和BP神经网络的决策算法。即根据输入的变化情况,利用D-S证据理论(Dempster-Shafer,D-S)对BP神经网络的结构进行优选。同时使用粒子群(PSO, Particle Swarm Optimization)算法来确定BP神经网络的初值,以改善其收敛速度慢和容易陷入局部极小值的问题。仿真结果显示,结合信息融合和 BP 神经网络的决策算法和BP神经网络相比,有效提高了BP神经网络训练的时间及预测的准确率,在适应复杂多变的输入信息时具有一定的优势。 相似文献
8.
9.
10.
《计算机测量与控制》2014,(3):912-914,922
针对区域用电量的时效性、复杂性和非线性等特点,提出基于人工蜂群算法(ABC)优化BP神经网络(ABC-BP)的区域用电量预测分析模型;以BP神经网络为基础,将往年区域用电量作为用电置的预测样本,采用基于ABC算法对BP神经网络的各个权值和阈值参数进行优化,最后建立模型应用于区域用电量预测系统,为分析区域内经济发展水平、经济走势、产业分布状况及政策实施效果等问题提供有力支持;介绍了人工蜂群算法(ABC)和BP神经网络算法,详细阐述ABC算法优化BP神经网络的权值和阈值;通过实验仿真对比,提出的算法预测结果比仅仅使用BP神经网络算法以及粒子群优化BP神经网络算法更高,是一种有效可靠的区域用电量预测方法。 相似文献
11.
随着网络规模的增长,Overlay网络流量预测已经日渐成为研究热点。与传统网络相比,Overlay网络本身的特性决定了传统的预测方法已不能适应它的要求。提出一种基于模拟退火的粒子群神经网络来预测Overlay网络的流量,运用反向计算方法,从理想最优值出发,近距离寻找最优解,缩短了求解时间并加大了找到最优解的几率。通过实验仿真可以看出,改进的BP神经网络方法的预测效果要明显好于传统的BP神经网络。 相似文献
12.
AdaBoost_BP神经网络在铁路货运量预测中的应用 总被引:3,自引:0,他引:3
为提高BP神经网络预测模型的预测准确性,将AdaBoost算法和BP神经网络相结合,提出了一种AdaBoost_BP神经网络预测模型。将该预测模型应用于我国1999年—2009年铁路货运量的历史统计数据,进行有效性验证,结果表明该模型对铁路货运量预测是有效、可靠的,且具有较高的预测精度,可应用于实际预测。 相似文献
13.
快速二阶BP网络及其在城市用水量预测中的应用 总被引:4,自引:0,他引:4
针对BP网络收敛速度慢,易导致局部极小值的缺点,提出一种快速二阶BP网络,并以城市年用水量预测为例,与BP网络对比,结果表明,该方法加快了收敛速度,提出了结果的准确度。 相似文献
14.
宫运启 《计算机工程与应用》2012,48(21):235-239
针对工序级能耗难以用数学方法精确估算的问题,提出了一个基于神经网络的机械加工工序能耗预测方法。给出了输入变量及输出变量的选取及其归一化处理方法,进行了隐含层节点数和传递函数的选取。以各切削用量组合及其对应能源消耗的历史数据作为神经网络训练的样本集,建立切削用量组合方案输入和能源消耗输出间的非线性关系,从而对新的切削用量参数组合进行能耗值的预测。以某企业导叶片的粗铣加工为例,验证了该能耗预测方法的有效性。 相似文献
15.
BP网络和多元线性回归在产量预测中的应用 总被引:2,自引:0,他引:2
采用改进的BP神经网络算法和多元线性回归模型分别建立目标函数,并以油田产量预测为例计算验证。通过比较分析,BP网络模型克服了多元线性回归模型的局限性,检验误差为0.016 2,同时表明神经网络的非线性映射能力能够更好地反应多个自变量和因变量之间的复杂关系,具有较好的精确性和可行性。 相似文献
16.
如何在满足服务需求与市场需求的同时降低企业的投资,变成了一个电信企业必须面对的问题。基于神经网络的电信计划分析预测,可以综合考虑许多对电信计划有影响的因素,比如:产品消费量,服务质量,用户数量,设备性能,收入,投资等等。结合真实的电信计划预测情况,给出了计划预测神经网络模型,并以一个城市的电信计划预测的真实情况为例,验证和分析了预测模型较高的精确性与有效性。 相似文献
17.
为更有效预测设备故障,提出一种基于灰色粗糙集与BP神经网络的设备故障预测模型。用灰色关联分析和粗糙集理论分别对二维故障决策表进行横向和纵向两个维度的约简,将冗余的数据和属性去掉,并将约简后的数据输入到BP神经网络,预测设备故障。最后以地铁信号设备故障预测为例进行实例验证,结果表明,该模型预测误差更小,预测准确率更高。 相似文献
18.
机场噪声预测对机场噪声控制、航班计划制定和机场规划设计具有十分重要的作用。现有的机场噪声预测模型都是以飞机的噪声距离曲线(NPD曲线)为核心,用相应的数学模型将其修正至与具体机场的特定环境条件相关的噪声传播模型,存在预测成本高和误差大的缺点。针对这种情况,提出一种使用BP神经网络利用机场噪声历史监测数据进行NPD曲线修正计算方法,从而建立适用于特定机场环境条件的机场噪声预测模型。实验表明,在特定机场的特定环境条件下,允许误差为0.5 dB时,该模型预测准确率高达91.5%以上,具有预测成本小、准确度高的特点。 相似文献
19.
20.
为了网络流量预测准确性,提出一种蚁群算法(ACO)优化BP神经网络(BPNN)的网络流量混沌预测模型(ACO-BPNN)。对网络流量时间序列进行重构,将BPNN参数作为蚂蚁的位置向量,通过蚁群信息交流和相互协作找到BPNN最优参数,建立网络流量最优预测模型,并采用实测网络流量数据进行有效性验证。结果表明,ACO-BPNN能够准确刻画网络流量变化特性,提高网络流量的预测准确性。 相似文献