首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Inverse-electron-demand Diels–Alder (iEDDA) cycloaddition between 1,2,4,5-tetrazines and strained dienophiles belongs among the most popular bioconjugation reactions. In addition to its fast kinetics, this cycloaddition can be tailored to produce fluorescent products from non-fluorescent starting materials. Here we show that even the reaction intermediates formed in iEDDA cycloaddition can lead to the formation of new types of fluorophores. The influence of various substituents on their photophysical properties and the generality of the approach with use of various trans-cyclooctene derivatives were studied. Model bioimaging experiments demonstrate the application potential of fluorogenic iEDDA cycloaddition.  相似文献   

3.
We have shown that 4-dibenzocyclooctynol (DIBO), which can easily be obtained by a streamlined synthesis approach, reacts exceptionally fast in the absence of a Cu(I) catalyst with azido-containing compounds to give stable triazoles. Chemical modifications of DIBO, such as oxidation of the alcohol to a ketone, increased the rate of strain promoted azide-alkyne cycloadditions (SPAAC). Installment of a ketone or oxime in the cyclooctyne ring resulted in fluorescent active compounds whereas this property was absent in the corresponding cycloaddition adducts; this provides the first example of a metal-free alkyne-azide fluoro-switch click reaction. The alcohol or ketone functions of the cyclooctynes offer a chemical handle to install a variety of different tags, and thereby facilitate biological studies. It was found that DIBO modified with biotin combined with metabolic labeling with an azido-containing monosaccharide can determine relative quantities of sialic acid of living cells that have defects in glycosylation (Lec CHO cells). A combined use of metabolic labeling/SPAAC and lectin staining of cells that have defects in the conserved oligomeric Golgi (COG) complex revealed that such defects have a greater impact on O-glycan sialylation than galactosylation, whereas sialylation and galactosylation of N-glycans was similarly impacted. These results highlight the fact that the fidelity of Golgi trafficking is a critical parameter for the types of oligosaccharides being biosynthesized by a cell. Furthermore, by modulating the quantity of biosynthesized sugar nucleotide, cells might have a means to selectively alter specific glycan structures of glycoproteins.  相似文献   

4.
Metabolic incorporation of azido nucleoside analogues into living cells can enable sensitive detection of DNA replication through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) and strain‐promoted azide–alkyne cycloaddition (SPAAC) “click” reactions. One major limitation to this approach is the poor chemical stability of nucleoside derivatives containing an aryl azide group. For example, 5‐azido‐2′‐deoxyuridine (AdU) exhibits a 4 h half‐life in water, and it gives little or no detectable labeling of cellular DNA. In contrast, the benzylic azide 5‐(azidomethyl)‐2′‐deoxyuridine (AmdU) is stable in solution at 37 °C, and it gives robust labeling of cellular DNA upon addition of fluorescent alkyne derivatives. In addition to providing the first examples of metabolic incorporation into and imaging of azide groups in cellular DNA, these results highlight the general importance of assessing azide group stability in bioorthogonal chemical reporter strategies.  相似文献   

5.
Metabolic glycoengineering (MGE) is an established method to incorporate chemical reporter groups into cellular glycans for subsequent bioorthogonal labeling. The method has found broad application for the visualization and isolation of glycans allowing their biological roles to be probed. Furthermore, targeting of drugs to cancer cells that present high concentrations of sialic acids on their surface is an attractive approach. We report the application of a labeling reaction using 1,2-diamino-4,5-methylenedioxybenzene for the quantification of sialic acid derivates after MGE with various azide- and alkene-modified ManNAc, GlcNAc, and GalNAc derivatives. We followed the time course of sialic acid production and were able to detect sialic acids modified with the chemical reporter group – not only after addition of ManNAc derivatives to the cell culture. A cyclopropane-modified ManNAc derivative, being a model for the corresponding cyclopropene analog, which undergoes fast inverse-electron-demand Diels-Alder reactions with 1,2,4,5-tetrazines, resulted in the highest incorporation efficiency. Furthermore, we investigated whether feeding the cells with natural and unnatural ManNAc derivative results in increased levels of sialic acids and found that this is strongly dependent on the investigated cell type and cell fraction. For HEK 293T cells, a strong increase in free sialic acids in the cell interior was found, whereas cell-surface sialic acid levels are only moderately increased.  相似文献   

6.
7.
方申文  段明  易峰  李娟 《化学世界》2008,49(4):244-248
简介了"链接"化学的基本特点,综述了近几年来叠氮-炔"链接"化学在合成不同结构聚合物中的应用。  相似文献   

8.
Targeting small molecules to diseased tissues as therapy or diagnosis is a significant challenge in drug delivery. Drug‐eluting devices implanted during invasive surgery allow the controlled presentation of drugs at the disease site, but cannot be modified once the surgery is complete. We demonstrate that bioorthogonal click chemistry can be used to target circulating small molecules to hydrogels resident intramuscularly in diseased tissues. We also demonstrate that small molecules can be repeatedly targeted to the diseased area over the course of at least one month. Finally, two bioorthogonal reactions were used to segregate two small molecules injected as a mixture to two separate locations in a mouse disease model. These results demonstrate that click chemistry can be used for pharmacological drug delivery, and this concept is expected to have applications in refilling drug depots in cancer therapy, wound healing, and drug‐eluting vascular grafts and stents.  相似文献   

9.
The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017 , 52, 159–170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.  相似文献   

10.
Bacteria coat themselves with a dense array of cell envelope glycans that enhance bacterial fitness and promote survival. Despite the importance of bacterial glycans, their systematic study and perturbation remains challenging. Chemical tools have made important inroads toward understanding and altering bacterial glycans. This review describes how pioneering discoveries from Prof. Carolyn Bertozzi's laboratory inspired our laboratory to develop sugar probes to facilitate the study of bacterial glycans. As described below, we used metabolic glycan labelling to install bioorthogonal reporters into bacterial glycans, ultimately permitting the discovery of a protein glycosylation system, the identification of glycosylation genes, and the development of metabolic glycan inhibitors. Our results have provided an approach to screen bacterial glycans and gain insight into their function, even in the absence of detailed structural information.  相似文献   

11.
The biological relevance of glycans as mediators of key physiological processes, including disease‐related mechanisms, makes them attractive targets for a wide range of medical applications. Despite their important biological roles, especially as molecular recognition elements, carbohydrates have not been fully exploited as therapeutics mainly due to the scarcity of structure–activity correlations and their non‐drug‐like properties. A more detailed understanding of the complex carbohydrate structures and their associated functions should contribute to the development of new glycan‐based pharmaceuticals. Recent significant progress in oligosaccharide synthesis and chemical glycobiology has renewed the interest of the medicinal chemistry community in carbohydrates. This promises to increase our possibilities to harness them in drug discovery efforts for the development of new and more effective, synthetic glycan‐based therapeutics and vaccines.  相似文献   

12.
The introduction of chemical reporter groups into glycan structures through metabolic oligosaccharide engineering (MOE) followed by bio-orthogonal ligation is an important tool to study glycosylation. We show the incorporation of synthetic galactose derivatives that bear terminal alkene groups in hepatic cells, with and without infection by Plasmodium berghei parasites, the causative agent of malaria. Additionally, we demonstrated the contribution of GLUT1 to the transport of these galactose derivatives, and observed a consistent increase in the uptake of these compounds going from naïve to P. berghei-infected cells. Finally, we used MOE to study the interplay between Plasmodium parasites and their mosquito hosts, to reveal a possible transfer of galactose building blocks from the latter to the former. This strategy has the potential to provide new insights into Plasmodium glycobiology as well as for the identification and characterization of key glycan structures for further vaccine development.  相似文献   

13.
14.
Cell‐surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell‐surface sialoglycans by “hijacking” the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.  相似文献   

15.
Phosphatidylinositol (PI) lipids control critical biological processes, so aberrant biosynthesis often leads to disease. As a result, the capability to track the production and localization of these compounds in cells is vital for elucidating their complex roles. Herein, we report the design, synthesis, and application of clickable myo-inositol probe 1 a for bioorthogonal labeling of PI products. To validate this platform, we initially conducted PI synthase assays to show that 1 a inhibits PI production in vitro. Fluorescence microscopy experiments next showed probe-dependent imaging in T-24 human bladder cancer and Candida albicans cells. Growth studies in the latter showed that replacement of myo-inositol with probe 1 a led to an enhancement in cell growth. Finally, fluorescence-based TLC analysis and mass spectrometry experiments support the labeling of PI lipids. This approach provides a promising means for tracking the complex biosynthesis and trafficking of these lipids in cells.  相似文献   

16.
Conjugation of fluorescent dyes to proteins—a prerequisite for the study of conformational dynamics by single-molecule (sm) FRET—can lead to substantial changes in a dye's photophysical properties, ultimately biasing the determination of inter-dye distances. In particular, cyanine dyes and their derivatives, the most commonly used dyes in smFRET experiments, exhibit such behavior. To overcome this, we developed a general strategy to equip proteins site-specifically with FRET pairs through chemoselective reactions with two distinct noncanonical amino acids simultaneously incorporated through genetic code expansion in Escherichia coli. Application of this technique to human NADPH-cytochrome P450 reductase (CPR) demonstrated the importance of homogenously labeled samples for accurate determination of FRET efficiencies and unveiled the effect of NADP+ on the ionic-strength-dependent modulation of the conformational equilibrium of CPR. Thanks to its generality and accuracy, the presented methodology establishes a new benchmark for deciphering of complex molecular dynamics in single molecules.  相似文献   

17.
Bioorthogonal chemistry is a rapidly expanding field of research that involves the use of small molecules that can react selectively with biomolecules in living cells and organisms, without causing any harm or interference with native biochemical processes. It has made significant contributions to the field of biology and medicine by enabling selective labeling, imaging, drug targeting, and manipulation of bio-macromolecules in living systems. This approach offers numerous advantages over traditional chemistry-based methods, including high specificity, compatibility with biological systems, and minimal interference with biological processes. In this review, we provide an overview of the recent advancements in bioorthogonal chemistry and their current and potential applications in translational research. We present an update on this innovative chemical approach that has been utilized in cells and living systems during the last five years for biomedical applications. We also highlight the nucleic acid-templated synthesis of small molecules by using bioorthogonal chemistry. Overall, bioorthogonal chemistry provides a powerful toolset for studying and manipulating complex biological systems, and holds great potential for advancing translational research.  相似文献   

18.
The application of new chemical reactions in a biological context has advanced bioconjugation methods for both fundamental research and commercial arenas. Recent adaptations of reactions such as Huisgen 1,3‐dipolar or Diels–Alder cycloadditions have enabled the labeling of specific residues in biomolecules by the attachment of molecules carrying azides, alkynes, or strained alkenes. Although these are fundamental tools, there is a need for the discovery of reactions that can label native proteins. We report herein the adaptation of the Paal–Knorr reaction to label lysine residues in proteins via pyrrole linkages.  相似文献   

19.
The term coupling‐and‐decoupling (CAD) chemistry refers to applications in which efficient bond formation and subsequent cleavage between two moieties is required. Within this context, the scope of the vinyl sulfonate (VSO) group as an efficient tool for CAD chemistry is reported. The coupling step relies on the click features of the Michael‐type addition of diverse nucleophiles to vinyl sulfonates as a valuable methodology. The feasibility of this strategy has been proved by the high yields obtained in mild conditions with model VSO derivatives. Cleavage of the resulting sulfonate adducts either through nucleophilic substitution with different nucleophiles (for alkyl VSO groups) or through hydrolysis (for both alkyl and aryl VSO) are successful strategies for the decoupling step, the former being the most promising, as the reaction proceeds under milder conditions with thiol nucleophiles. Moreover, the click VSO coupling chemistry proves to be orthogonal with the click CuAAC reaction, which enables the VSO‐CAD methodology for the preparation of hetero‐bifunctional clickable and cleavable linkers for double click modular strategies. The potential of the VSO‐CAD chemistry is demonstrated in two biologically relevant examples: the decoupling of sulfonates with glutathione (GSH) under conditions compatible with those of living systems; and the synthesis of homo‐ and heterogeneous multivalent glycosylated systems from 1‐thio and 1‐azido or 1‐azidoethyl sugar derivatives and bis‐vinyl sulfonates (homo systems) or alkynyl‐VSO bifunctional clickable‐cleavable linkers (hetero systems). As proof of concept, the cleavable character of these multivalent systems was demonstrated by using one of them as a reversible linker for the non‐covalent assembling and chemical decoupling of two model lectins.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号