共查询到20条相似文献,搜索用时 0 毫秒
1.
John Yan Shuchi Gupta Dr. David H. Sherman Prof. Dr. Kevin A. Reynolds Prof. Dr. 《Chembiochem : a European journal of chemical biology》2009,10(9):1537-1543
Working together or apart : Separating multimodular PKS enzymes into their respective monomodules by replacing the natural intraprotein linkers (illustrated in red in the figure) with a matched docking domain pair from a heterologous PKS system, leads to only small losses in overall in vivo polyketide product and increased efficiency at utilizing polyketide pathway intermediates to prime the biosynthetic process.
2.
Malek Zerikly Gregory L. Challis Prof. 《Chembiochem : a European journal of chemical biology》2009,10(4):625-633
New drugs from silent gene clusters : Analysis of genome sequence data has identified numerous “cryptic” gene clusters encoding novel natural product biosynthetic assembly lines; this suggests that many new bioactive metabolites remain to be discovered, even in extensively investigated organisms. Several related and complementary strategies for identifying the products of these clusters have emerged recently and revitalized the search for novel bioactive natural products.
3.
Birgit Ohlendorf Stefan Leyers Anja Krick Dr. Stefan Kehraus Dr. Michael Wiese Prof. Dr. Gabriele M. König Prof. Dr. 《Chembiochem : a European journal of chemical biology》2008,9(18):2997-3003
Myxobacteria are gliding bacteria that belong to the δ‐Proteobacteria and are known for their unique biosynthetic capabilities. Among myxobacteria, Nannocystis spp. are most closely related to marine myxobacteria and their secondary metabolism has hardly been investigated. Phenylnannolones A ( 1 ), B ( 2 ) and C ( 3 ) were obtained from a culture of Nannocystis exedens that was isolated from the intertidal region of Crete. Compound 1 had inhibitory activity toward the ABCB1 gene product P‐glycoprotein and reversed daunorubicin resistance in cultured cancer cells. Phenylnannolone A has an unusual structural architecture; it is composed of an ethyl‐substituted polyene chain linked to a pyrone moiety on one side and to a phenyl ring on the other. The investigation of the biosynthesis with labelled precursors revealed acetate, butyrate and phenylalanine as building blocks for 1 . The labelling pattern suggested novel biochemical reactions for the biosynthesis of the starter unit. 相似文献
4.
Takuya Ito Dr. Niran Roongsawang Dr. Norifumi Shirasaka Dr. Wanli Lu Patricia M. Flatt Dr. Noer Kasanah Dr. Cristobal Miranda Dr. Taifo Mahmud Prof. Dr. 《Chembiochem : a European journal of chemical biology》2009,10(13):2253-2265
Pactamycin is an aminocyclopentitol‐derived natural product that has potent antibacterial and antitumor activities. Sequence analysis of an 86 kb continuous region of the chromosome from Streptomyces pactum ATCC 27456 revealed a gene cluster involved in the biosynthesis of pactamycin. Gene inactivation of the Fe‐S radical SAM oxidoreductase (ptmC) and the glycosyltransferase (ptmJ), individually abrogated pactamycin biosynthesis; this confirmed the involvement of the ptm gene cluster in pactamycin biosynthesis. The polyketide synthase gene (ptmQ) was found to support 6‐methylsalicylic acid (6‐MSA) synthesis in a heterologous host, S. lividans T7. In vivo inactivation of ptmQ in S. pactum impaired pactamycin and pactamycate production but led to production of two new pactamycin analogues, de‐6‐MSA‐pactamycin and de‐6‐MSA‐pactamycate. The new compounds showed equivalent cytotoxic and antibacterial activities with the corresponding parent molecules and shed more light on the structure–activity relationship of pactamycin. 相似文献
5.
6.
Adele Cutignano Dr. Guido Cimino Dr. Guido Villani Dr. Angelo Fontana Dr. 《Chembiochem : a European journal of chemical biology》2009,10(2):315-322
Polypropionates that incorporate pyrones are a family of polyketides featuring the chemistry of a few marine molluscs capable of phototrophic CO2 fixation as a result of storing viable symbiotic chloroplasts in their bodies. The role and origin of these molecules is poorly investigated, although the unusual biological activities and chemistry of these natural products have recently received renewed interest. Here, we report the results of in vivo studies on production of γ‐pyrone‐containing polypropionates in the Mediterranean mollusc Elysia viridis. Biosynthesis of the metabolites in the sacoglossan is shown to proceed through condensation of eight intact C3 units by polyketide synthase assembly. LC–MS and NMR spectroscopic studies demonstrate that the process involves a pyrone tetraene ( 10 ) as key intermediate, whereas the levels of the final polypropionates ( 6 , 7 and 9 ) are related to each other and show a significant dependence upon light conditions. 相似文献
7.
Dr. Takayuki Motoyama Dr. Toshihiko Nogawa Dr. Toshiaki Hayashi Dr. Hiroshi Hirota Dr. Hiroyuki Osada 《Chembiochem : a European journal of chemical biology》2019,20(5):693-700
Most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Nectriapyrones are known as secondary metabolites produced mainly by symbiotic fungi, including endophytes and plant pathogens. Herein, we show the induction of nectriapyrone production in the rice blast fungus Pyricularia oryzae. The two-component signal transduction system was disturbed by disrupting OSM1 and PoYPD1, which encoded a HOG MAP kinase and a His-containing phosphotransfer (HPt) protein, respectively. This induced the production of two polyketide compounds: nectriapyrone and its hydroxylated analogue. The nectriapyrone biosynthetic gene cluster consists of a polyketide synthase gene (NEC1) and an O-methyltransferase gene (NEC2). Overexpression of the two genes induced overproduction of nectriapyrone and five nectriapyrone analogues, including a new derivative. Nectriapyrone production was not required for the infection of rice. The structure of nectriapyrone is similar to that of the germicidins produced by Streptomyces spp., and nectriapyrone inhibited the growth of Streptomyces griseus. 相似文献
8.
9.
Parallel Post‐Polyketide Synthase Modification Mechanism Involved in FD‐891 Biosynthesis in Streptomyces graminofaciens A‐8890 下载免费PDF全文
Prof. Dr. Fumitaka Kudo Koichi Kawamura Takashi Furuya Hiroto Yamanishi Atsushi Motegi Akiko Komatsubara Mario Numakura Prof. Dr. Akimasa Miyanaga Prof. Dr. Tadashi Eguchi 《Chembiochem : a European journal of chemical biology》2016,17(3):233-238
To isolate a key polyketide biosynthetic intermediate for the 16‐membered macrolide FD‐891 ( 1 ), we inactivated two biosynthetic genes coding for post‐polyketide synthase (PKS) modification enzymes: a methyltransferase (GfsG) and a cytochrome P450 (GfsF). Consequently, FD‐892 ( 2 ), which lacks the epoxide moiety at C8–C9, the hydroxy group at C10, and the O‐methyl group at O‐25 of FD‐891, was isolated from the gfsF/gfsG double‐knockout mutant. In addition, 25‐O‐methyl‐FD‐892 ( 3 ) and 25‐O‐demethyl‐FD‐891 ( 4 ) were isolated from the gfsF and gfsG mutants, respectively. We also confirmed that GfsG efficiently catalyzes the methylation of 2 and 4 in vitro. Further, GfsF catalyzed the epoxidation of the double bond at C8‐C9 of 2 and 3 and subsequent hydroxylation at C10, to afford 4 and 1 , respectively. These results suggest that a parallel post‐PKS modification mechanism is involved in FD‐891 biosynthesis. 相似文献
10.
Dr. Glenna J. Kramer Dr. Sheila Pimentel-Elardo Prof. Justin R. Nodwell 《Chembiochem : a European journal of chemical biology》2020,21(15):2116-2120
Filamentous fungi are known producers of important secondary metabolites. In spite of this, the majority of these organisms have not been studied at the genome level, leaving many of the bioactive molecules they produce undiscovered. In this study, we explore the secondary metabolite potential of an understudied fungus, Hyphodiscus hymeniophilus. By sequencing and assembling the first genome from this genus, we show that this fungus has genes for at least 20 natural products and that many of these products are likely novel. One of these metabolites is identified: a new, red-pigmented member of the azaphilone class, hyphodiscorubrin. We show that this metabolite is only produced when the fungus is grown in the light. Furthermore, the biosynthetic gene cluster of hyphodiscorubrin is identified though homology to other known azaphilone producing clusters. 相似文献
11.
Phonghanpot S Punya J Tachaleat A Laoteng K Bhavakul V Tanticharoen M Cheevadhanarak S 《Chembiochem : a European journal of chemical biology》2012,13(6):895-903
A gene from Xylaria sp. BCC 1067, pks3, that encodes a putative 3660-residue hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) was characterised by targeted gene disruption in combination with comprehensive product identification. Studies of the features of a corresponding mutant, YA3, allowed us to demonstrate that pks3 is responsible for the synthesis of a new pyrroline compound, named xyrrolin, in the wild-type Xylaria sp. BCC 1067. The structure of xyrrolin was established by extensive spectroscopic and spectrometric analyses, including low- and high-resolution MS, IR, (1)H NMR, (13)C NMR, (13)C NMR with Dept135, HMQC 2D NMR, HMBC 2D NMR and COSY 2D NMR. On the basis of the Pks3 domain organisation and the chemical structure of xyrrolin, we proposed that biosynthesis of this compound requires the condensation of a tetraketide and an L-serine unit, followed by Dieckmann or reductive cyclisation and enzymatic removal of ketone residue(s). Bioassays of the pure xyrrolin further displayed cytotoxicity against an oral cavity (KB) cancer cell line. 相似文献
12.
Kopp M Irschik H Pradella S Müller R 《Chembiochem : a European journal of chemical biology》2005,6(7):1277-1286
Myxobacteria show a high potential for the production of natural compounds that exhibit a wide variety of antibiotic, antifungal, and cytotoxic activities. The genus Sorangium is of special biotechnological interest because it produces almost half of the secondary metabolites isolated from these microorganisms. We describe a transposon-mutagenesis approach to identifying the disorazol biosynthetic gene cluster in Sorangium cellulosum So ce12, a producer of multiple natural products. In addition to the highly effective disorazol-type tubulin destabilizers, S. cellulosum So ce12 produces sorangicins, potent eubacterial RNA polymerase inhibitors, bactericidal sorangiolides, and the antifungal chivosazoles. To obtain a transposon library of sufficient size suitable for the identification of the presumed biosynthetic gene clusters, an efficient transformation method was developed. We present here the first electroporation protocol for a strain of the genus Sorangium. The transposon library was screened for disorazol-negative mutants. This approach led to the identification of the corresponding trans-acyltransferase core biosynthetic gene cluster together with a region in the chromosome that is likely to be involved in disorazol biosynthesis. A third region in the genome harbors another gene that is presumed to be involved in the regulation of disorazol production. A detailed analysis of the biosynthetic and regulatory genes is presented in this paper. 相似文献
13.
Characterization of the Nocardiopsin Biosynthetic Gene Cluster Reveals Similarities to and Differences from the Rapamycin and FK‐506 Pathways 下载免费PDF全文
Dana M. Bis Yang H. Ban Elle D. James Dr. Norah Alqahtani Prof. Rajesh Viswanathan Prof. Amy L. Lane 《Chembiochem : a European journal of chemical biology》2015,16(6):990-997
Macrolide‐pipecolate natural products, such as rapamycin ( 1 ) and FK‐506 ( 2 ), are renowned modulators of FK506‐binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB‐M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A–D ( 4 – 7 ) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L ‐lysine into the L ‐pipecolic acid incorporated into 4 and 5 . Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP‐binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal. 相似文献
14.
Wu J Hothersall J Mazzetti C O'Connell Y Shields JA Rahman AS Cox RJ Crosby J Simpson TJ Thomas CM Willis CL 《Chembiochem : a European journal of chemical biology》2008,9(9):1500-1508
A common feature of the mupirocin and other gene clusters of the AT-less polyketide synthase (PKS) family of metabolites is the introduction of carbon branches by a gene cassette that contains a beta-hydroxy-beta-methylglutaryl CoA synthase (HMC) homologue and acyl carrier protein (ACP), ketosynthase (KS) and two crotonase superfamily homologues. In vivo studies of Pseudomonas fluorescens strains in which any of these components have been mutated reveal a common phenotype in which the two major isolable metabolites are the truncated hexaketide mupirocin H and the tetraketide mupiric acid. The structure of the latter has been confirmed by stereoselective synthesis. Mupiric acid is also the major metabolite arising from inactivation of the ketoreductase (KR) domain of module 4 of the modular PKS. A number of other mutations in the tailoring region of the mupirocin gene cluster also result in production of both mupirocin H and mupiric acid. To explain this common phenotype we propose a mechanistic rationale in which both mupirocin H and mupiric acid represent the products of selective and spontaneous release from labile points in the pathway that occur at significant levels when mutations block the pathway either close to or distant from the labile points. 相似文献
15.
16.
Dr. Weimao Zhong Jessica M. Deutsch Dongqi Yi Nadine H. Abrahamse Ipsita Mohanty Samuel G. Moore Prof. Dr. Andrew C. McShan Prof. Dr. Neha Garg Prof. Dr. Vinayak Agarwal 《Chembiochem : a European journal of chemical biology》2023,24(12):e202300190
Commensal bacteria associated with marine invertebrates are underappreciated sources of chemically novel natural products. Using mass spectrometry, we had previously detected the presence of peptidic natural products in obligate marine bacteria of the genus Microbulbifer cultured from marine sponges. In this report, the isolation and structural characterization of a panel of ureidohexapeptide natural products, termed the bulbiferamides, from Microbulbifer strains is reported wherein the tryptophan side chain indole participates in a macrocyclizing peptide bond formation. Genome sequencing identifies biosynthetic gene clusters encoding production of the bulbiferamides and implicates the involvement of a thioesterase in the indolic macrocycle formation. The structural diversity and widespread presence of bulbiferamides in commensal microbiomes of marine invertebrates point toward a possible ecological role for these natural products. 相似文献
17.
Jacob C. Carlson J. L. Fortman Dr. Yojiro Anzai Dr. Shengying Li Douglas A. Burr Dr. David H. Sherman Prof. 《Chembiochem : a European journal of chemical biology》2010,11(4):564-572
The structurally intriguing bicyclic ketal moiety of tirandamycin is common to several acyl‐tetramic acid antibiotics, and is a key determinant of biological activity. We have identified the tirandamycin biosynthetic gene cluster from the environmental marine isolate Streptomyces sp. 307–9, thus providing the first genetic insight into the biosynthesis of this natural product scaffold. Sequence analysis revealed a hybrid polyketide synthase–nonribosomal peptide synthetase gene cluster with a colinear domain organization, which is entirely consistent with the core structure of the tirandamycins. We also identified genes within the cluster that encode candidate tailoring enzymes for elaboration and modification of the bicyclic ketal system. Disruption of tamI, which encodes a presumed cytochrome P450, led to a mutant strain deficient in production of late stage tirandamycins that instead accumulated tirandamycin C, an intermediate devoid of any post assembly‐line oxidative modifications. 相似文献
18.
The modular-type polyketide synthase (PKS) that is involved in aureothin (aur) biosynthesis represents one of the first examples in which a single PKS module (AurA) is used in an iterative fashion. Here we report on the heterologous expression of an engineered AurAB fusion protein that unequivocally proves the iterative nature of AurA. In addition, point mutations reveal that aur PKS module 4 participates in polyketide biosynthesis despite its aberrant acyltransferase domain. 相似文献
19.
Prof. Robert Thomas 《Chembiochem : a European journal of chemical biology》2016,17(23):2208-2215
The reported acetate‐derived labelling of the fungal naphthalene γ‐pyrone fonsecin, two streptomycete dodecaketide αpyrones TW93f and TW93g, and the streptomycete phenanthraquinones piloquinone, murayaquinone and haloquinone appear to be exceptions to the generalisation that fungi and streptomycetes produce fused‐ring aromatic polyketides by different modes of cyclisation. A review of their 1) originally assigned formulae, 2) [13C2]acetate‐derived labelling patterns, and 3) modes of cyclisation leads to the recognition of feasible alternative chemical structures or biosynthetic pathways, which are in accord with the originally proposed classification system. 相似文献