首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article reports spin coating and hydrothermal approaches to the synthesis of Cu2O seed layer−ZnO and Cu2O film−ZnO heterojunction films on fluorine-doped tin oxide substrates. Cu2O seed layers and an ethylene glycol (EG) reducing agent were employed to obtain pure, uniform, and adhesive Cu2O films on the substrate. Transmission electron microscopy validated the heterojunctions with clear interfaces between each component on the p-Cu2O film−n-ZnO (with EG) sample, the conductive types of which were determined through Mott−Schottky measurements. Constructed energy band diagrams supported the Mott−Schottky result, manifesting favorable conduction band positions for the generation of •O2 radicals for all constituent materials and indicating smooth charge carrier transport for the p-Cu2O film−n-ZnO (with EG) sample. Furthermore, abundant p−n junction interfaces synergistically enabled the sample to exhibit the most satisfactory photodegradation capability (rate constant ≈ 8.9 × 10−3 min−1), which was attributable to the predominance of •OH radicals. The sample's rectifying (diode) behavior with a ratio of the current density (J) at +3 V (forward bias) to that at −3 V (reverse bias) of approximately 27 was observed without ultraviolet illumination. Moreover, the J at −3 V is under illumination approximately 80 times that without illumination, implying the suitability of the sample for UV detectability.  相似文献   

2.
A unique 3d–4f mixed metal trinuclear compound, [Cu2Gd(L)2(NO3)2]NO3 (1; H2L=2,6-di(acetoacetyl)pyridine), is derived from a ‘one-pot’ reaction with H2L,Cu(NO3)2·3H2O and Gd(NO3)3·5H2O. Two L2− providing one central 2,6-diacylpyridine site and two terminal 1,3-diketonate sites hold two CuII ions and GdIII ion and form a linear Cu–Gd–Cu trinuclear core. This compound shows ferromagnetic interaction between CuII and GdIII.  相似文献   

3.
Simplifying the synthesis of cuprous oxide (Cu2O) photocathode has turned out to be critical for scalable application. Herein, we present a novel thermal conversion approach to synthesize a shell/core structured Cu2O/Cu photocathode. In this method a shell comprising a mixture of CuO and Cu2O is obtained by heating Cu mesh at 500 °C in air beforehand, and subsequent annealing in N2 atmosphere converts the unwanted CuO into Cu2O gradually, which results in the desired Cu2O/Cu structure. A slightly viscous starch sol coats the Cu2O shell as carbon source, after carbonizing under N2 atmosphere, the Cu2O/Cu is covered with compact carbon films, i.e. C/Cu2O/Cu. Photoelectrochemical experiments reveal that the introduction of carbon layers on Cu2O enhances the photocurrent density from − 1.5 to − 2.75 mA·cm 2 at 0 V vs. reversible hydrogen electrode (RHE). Moreover, the deposition of carbon films on Cu2O in this work has little effect on improving the stability.  相似文献   

4.
Copper-nickel phosphides/ graphite-like phase carbon nitride (Cu3P-Ni2P/g-C3N4) composites were obtained through a facile one-pot in situ solvothermal approach. The coexistence of Cu3P and Ni2P plays an important role in enhancing the catalytic activity of g-C3N4. The 7 wt% Cu3P-Ni2P/g-C3N4 bimetallic phosphide photocatalyst demonstrates the best photocatalytic hydrogen (H2) evolution rate of 6529.8 μmol g−1 h−1, which is 80.7-fold higher than that of g-C3N4. The apparent quantum yield (AQE) was determined to be 18.5% at 400 nm over the 7% Cu3P-Ni2P/g-C3N4. This in situ growth strategy produced intimate contact interfaces, leading to a significantly promoted separation of charge carriers, and hence strengthened the photocatalytic H2 production. Moreover, the coexistence of Cu3P and Ni2P reduced the overpotential of H2 during the evolution process, further benefiting H2 production. Finally, the photocatalytic enhancement mechanism was proposed and verified by fluorescence and electrochemical analysis. This work provides a low-cost strategy to synthesize nonprecious bimetallic phosphides/carbon nitride photocatalyst with outstanding H2 production activity. © 2020 Society of Chemical Industry  相似文献   

5.
The advanced chemical oxidation of raw and biologically pretreated textile wastewater by (1) ozonation, (2) H2O2 /UV − C oxidation and (3) sequential application of ozonation followed by H2O2 /UV − C oxidation was investigated at the natural pH values (8 and 11) of the textile effluents for 1 h. Analysis of the reduction in the pollution load was followed by total environmental parameters such as TOC, COD, UV–VIS absorption kinetics and the biodegradability factor, fB. The successive treatment combination, where a preliminary ozonation step was carried out prior to H2O2 /UV − C oxidation without changing the total treatment time, enhanced the COD and TOC removal efficiency of the H2O2 /UV − C oxidation by a factor of 13 and 4, respectively, for the raw wastewater. In the case of biotreated textile effluent, a preliminary ozonation step increased COD removal of the H2O2 /UV − C treatment system from 15% to 62%, and TOC removal from 0% to 34%. However, the sequential process did not appear to be more effective than applying a single ozonation step in terms of TOC abatement rates. Enhancement of the biodegradability factor (fB) was more pronounced for the biologically pretreated wastewater with an almost two‐fold increase for the optimized Advanced Oxidation Technologies (AOTs). For H2O2 /UV − C oxidation of raw textile wastewater, apparent zero order COD removal rate constants (kapp), and the second order OH· formation rates (ri) have been calculated. © 2001 Society of Chemical Industry  相似文献   

6.
Electrochemical reduction of CO2 is widely researched in recent years. However, direct electro-reduction of diluted CO2 to C2 products is seldomly studied. In this work, electrocatalytic reduction of CO2 with different concentrations were conducted on Cu2(PO4)(OH) catalysts. The catalytic performance in diluted CO2 is comparable with that in pure CO2 by using Cu2(PO4)(OH) as catalyst. Besides, the selectivity of C2 product is still as high as 64.6% in 50%CO2 concentration. The normalized C2 current density of Cu2(PO4)(OH) was over 6.8 times higher than that of commonly used Cu2O–Cu catalyst with similar size. In situ Raman spectroscopy proved that Cu+ is the main active site at higher potentials. More importantly, a higher local pH is realized under diluted CO2 test conditions which is favorable for promoting C–C coupling. Finally, in situ ATR-FTIR spectroscopy was performed to further monitor and identify the adsorbed intermediates and help reveal the mechanism for the catalysts.  相似文献   

7.
Microalgae offer great potential for the production of biofuel, but high photosynthetic activity is demanded for the practical realisation of microalgal biofuels. To this end, it is essential to evaluate the photosynthetic activity of single microalgal cells in a heterogeneous population. In this study, we present a method to monitor the photosynthetic activity of microalgae (in particular Euglena gracilis, a microalgal species of unicellular, photosynthetic, flagellate protists as our model organism) at single-cell resolution by Raman spectroscopy with deuterium from deuterium oxide (D2O) as a tracking probe. Specifically, we replaced H2O in culture media with D2O up to a concentration of 20 % without disturbing the growth rate of E. gracilis cells and evaluated C−D bond formation as a consequence of photosynthetic reactions by Raman spectroscopy. We used the probe to monitor the kinetics of the C−D bond formation in E. gracilis cells by incubating them in D2O media under light irradiation. Furthermore, we demonstrated Raman microscopy imaging of each single E. gracilis cell to discriminate deuterated cells from normal cells. Our results hold great promise for Raman-based screening of E. gracilis and potentially other microalgae with high photosynthetic activity by using D2O as a tracking probe.  相似文献   

8.
Three dinuclear coordination complexes generated from 1-n-butyl-2-((5-methyl-1H-pyrazole-3-yl)methyl)-1H-benzimidazole ( L ), have been synthesized and characterized spectroscopically and structurally by single crystal X-ray diffraction analysis. Reaction with iron(II) chloride and then copper(II) nitrate led to a co-crystal containing 78 % of [Cu(NO3)(μ-Cl)( L’ )]2 ( C1 ) and 22 % of [Cu(NO3)(μ-NO3)( L’ )]2 ( C2 ), where L was oxidized to a new ligand L . A mechanism is provided. Reaction with copper chloride led to the dinuclear complex [Cu(Cl)(μ-Cl)( L) ]2 ( C3 ). The presence of N−H⋅⋅⋅O and C−H⋅⋅⋅O intermolecular interactions in the crystal structure of C1 and C2 , and C−H⋅⋅⋅N and C−H⋅⋅⋅Cl hydrogen bonding in the crystal structure of C3 led to supramolecular structures that were confirmed by Hirshfeld surface analysis. The ligands and their complexes were tested for free radical scavenging activity and ferric reducing antioxidant power. The complex C1 / C2 shows remarkable antioxidant activities as compared to the ligand L and reference compounds.  相似文献   

9.
We demonstrate that Cu2O particles can be produced along with siloxene formation by simply dispersing layered CaSi2 into an aqueous solution of CuCl2 and HCl at room temperature. The Cl ions induce oxidative extraction of Ca from CaSi2 to form siloxene and trigger the reductive deposition of Cu particles. All particles are then gradually oxidized to form Cu2O particles under optimized conditions as follows. A trace amount of residual CaSi2 is dissolved in the solution, which provides OH ions, and a portion of the formed Cu particles are dissolved as [Cu(OH)4]2− ions. Accordingly, Cu2O particles would be formed through the comproportionation reaction between Cu and [Cu(OH)4]2− ions in the solution. However, under conditions with an excess amount of Cl ions results in further oxidation of Cu to also form Cu2Cl(OH)3. Thus, CaSi2 acts as an effective reduction and/or oxidation mediator to tune the number of Cl and OH ions and control the oxidation state of Cu.  相似文献   

10.
Two novel 1-D copper complexes {[CuII2(Hbpdc)2]Cl2}2·2H2O (1) and CuI(H2bpdc)Cl (2) (H2bpdc = 2,2′- bipyridyl-5,5′-dicarboxylic acid) have been one-pot hydrothermally synthesized by reaction of H2bpdc, CuCl2·2H2O, PrCl3 and glacial acetic acid and structurally characterized by IR spectroscopy, X-ray photoelectron spectroscopy and single-crystal X-ray diffraction. Single-crystal structural analyses show that 1 is a novel 1-D stair-like chain constructed from centric tetra-copper clusters {[CuII2(Hbpdc)2]Cl2}2 by means of Cu–O weak coordination interactions whereas 2 displays a 1-D comb-like chain built by [CuI(H2bpdc)Cl] units through Cl? bridges. More interestingly, 1 and 2 were one-pot hydrothermally synthesized, which is very rare in synthetic chemistry. The photofluorescence properties of 1 and 2 have been investigated.  相似文献   

11.
Enhancing the photocatalytic stability of Cu2O in the degradation of tetracycline is a great challenge in combating environmental water pollution because it is prone to deactivation by photocorrosion in aqueous environment. In this study, Cu2O/cellulose microfiber aerogel is synthesized through freeze-drying, utilizing the self-curling effect of cellulose and then calcined to produce Cu2O/C composite aerogel. The derived Cu2O/C composite aerogel features hollow carbon microfibers anchored with Cu2O nanocubes. Due to the curling structure and conductivity of the carbon microfibers, the photodegradation efficiency of the obtained Cu2O/C composite aerogel for tetracycline is drastically improved to 97.3% under 120 min of visible-light irradiation, and remains a cycling photodegradation rate of 84.3% after 10 cycles. The Cu2O/C composite aerogel shows remarkable strategies for designing and constructing Cu2O-based photocatalyst in the practical photodegradation of tetracycline under visible-light exposure.  相似文献   

12.
CuO is used as a catalyst or catalyst precursor in many chemical reactions that involve hydrogen as a reactant or product. A systematic study of the reaction of H2 with pure powders and films of CuO was carried out using in situ time-resolved X-ray diffraction (XRD) and surface science techniques. Oxide reduction was observed at atmospheric H2 pressures and elevated temperatures (150-300 °C), but only after an induction period. High temperature or H2 pressure and a large concentration of defects in the oxide substrate lead to a decrease in the magnitude of the induction time. Under normal process conditions, in situ time-resolved XRD shows that Cu1+ is not a stable intermediate in the reduction of CuO. Instead of a sequential reduction (CuO Cu4O3 Cu2O Cu), a direct CuO Cu transformation occurs. To facilitate the generation of Cu1+ in a catalytic process one can limit the supply of H2 or mix this molecule with molecules that can act as oxidant agents (O2, H2O). The behavior of CuO-based catalysts in the synthesis of methanol and methanol steam reforming is discussed in the light of these results.  相似文献   

13.
In this paper, Cu2O hollow nanospheres were first generated through a template free process, and then Cu hollow nanospheres were prepared using Cu2O hollow nanospheres as precursor and H2 as reductant. Phase identification and morphology observation of the products were carried out by X-ray diffraction(XRD), Transmission electron microscopy (TEM) and Field scanning electron microscopy (FSEM). The results show that Cu2O nanospheres generated at reflux are porous and hollow both in absolute alcohol and tert-butyl alcohol. It is feasible to fabricate well-dispersed Cu hollow nanospheres from Cu2O hollow nanospheres at 170 °C. Moreover, a remarkable blue shift effect was found in the ultraviolet-visible light (UV-visible) absorption spectra for both Cu2O and Cu hollow nanospheres.  相似文献   

14.
Selective catalytic reduction (SCR) of N2O with C2H6 took place effectively over Fe ion-exchanged BEA zeolite catalyst (Fe-BEA) even in the presence of excess oxygen. The mechanism in the SCR of N2O with C2H6 over Fe-BEA catalyst was studied by a transient response experiment and an in situ DRIFT spectroscopy. No oxidation of C2H6 by O2 took place below 350 °C (in C2H6/O2). In the N2O/C2H6/O2 system, however, it was found that the reaction of C2H6 with O2 was drastically enhanced by the presence of N2O even at low temperatures (200-300 °C). Therefore, it was concluded that N2O played an important role in the oxidation of C2H6 (i.e., activation of C2H6 at an initial step). On the basis of these findings, the mechanism in the SCR of N2O with C2H6 is discussed.  相似文献   

15.
Phase behavior and physical property measurements were carried out on mixtures of SO2-H2O; CO2-H2O, 5, 10, and 20 weight percent NaCl brines; and ternary CO2-SO2-H2O mixtures. The temperature was kept constant at 45°C, while saturation pressures were varied up to about 15 MPa. Binary measurements demonstrated that, at the same temperature and pressure, the mutual solubilities of SO2 and H2O are higher than those of CO2 and H2O. A three-phase region has been identified in the termary CO2-SO2-H2O phase diagram at 7.24 MPa, but no such region was found at higher pressures.  相似文献   

16.
CuCe-SAPO-34 catalysts based on the one-pot hydrothermal synthesis method were prepared for the first time. The addition of Ce suppressed the formation of CuO and increased the amount of active Cu2 +, resulting in better NH3-SCR activity than Cu-SAPO-34. Ce greatly improved the H2O resistance during the SCR process by stabilizing the zeolite structure and obstructing the transformation of active Cu2 + into inactive forms.  相似文献   

17.
CaBi2Nb2O9 (CBN)-based high-temperature piezoelectric ceramics with the formula of CaBi2Nb2−x(W3/4Cu1/4)xO9 were prepared via the traditional solid-state reaction method. Both the bulk microstructure and the electrical performance of the W/Cu co-doped CBN-based ceramics were systematically investigated. The results indicated that the W/Cu incorporation into the Nb-site altered the crystal structure, which enhanced the piezoelectricity and resistivity. The ceramic with the composition CaBi2Nb1.96(W3/4Cu1/4)0.04O9 exhibited good performance with a high d33 (~14 pC/N) and TC (~939℃). Moreover, the ceramic exhibited a good electrical resistivity (ρ) of 4.91 × 105 Ω·cm and a low dielectric loss (tanδ) of 0.1 at 600℃. Furthermore, the ceramic that was annealed at 900℃ for 2 h presented a d33 value of 13 pC/N, thus indicating good thermal stability of the piezoelectric properties. All these results confirm that the CaBi2Nb1.96(W3/4Cu1/4)0.04O9 ceramic may act as a potential promising candidate for piezoelectric device applications in high-temperature environments.  相似文献   

18.
The reaction of CuSO4 · 5H2O with 4,4-bipyridine and malic acid at 140 °C under solvothermal conditions afforded a mixed valence three-dimensional coordination polymer [CuICuII2(mal)(SO4)(bpy)2 · H2O]n, (1). The building unit consists of a Cu2+-dimer in which copper centers are bridged by malate and sulphate anions. SO42− anion further connects dimeric unit with the Cu1+ center. Building units are linked by 4,4-bipyridine ligands to form double chains, that are interconnected into 3D network through additional sulphate bridge.  相似文献   

19.
A typical metal organic framework, [Cu3 (BTC)2(H2O)3, BTC = 1,3,5-benzene tricarboxylate] has been used for the synthesis of pyrimidine-chalcones. We have explored a green synthesis of pyrimidine chalcones under Cu3(BTC)2 catalysis by Aldol condensation. Easy isolation of product, excellent yield, and recyclable catalyst makes this reaction eco-friendly. The technology was demonstrated to be applicable to the synthesis of a host of chemical hybrids.  相似文献   

20.
《Ceramics International》2022,48(11):15551-15564
Cuprous oxide (Cu2O), as one of the traditional photocatalytic antifouling agents, has its own defects for practical applications such as rapid recombination of carriers, serious photocorrosion (Cu2O changing into CuO) and explosive release of cuprous ions. Herein, a novel ternary interfacial heterojunction (Cu2O/C/CCN) was prepared by carbon doping of g-C3N4 followed by in-situ carbon film covering and Cu2O loading. Compared with pure Cu2O and Cu2O/g-C3N4, Cu2O/C/CCN presented more powerful broad-spectrum and long-term photocatalytic antibacterial properties against S. aureus and P. aeruginosa, and the antibacterial rate remained at approximately 94.28% and 90.54%, respectively, even after storage 30 days. The high antibacterial rate of the Cu2O/C/CCN can be attributed to the high photocatalytic performance and stable and continuous release of cuprous ions. The carbon doping of g-C3N4 could adjust its band gap and promote more efficient photoexcited carrier generation and transfer by the formation of delocalized large π bonds like “electron bridge” as the first charge transfer channel. The existence of carbon film between g-C3N4 and Cu2O can build the second highly efficient charge transfer channel for the separation of photoexcited carriers by forming a Z-scheme interfacial heterojunction. DFT calculation and fluorescence spectrum results showed that more active electrons on CCN tend to transfer to Cu2O through the two nonradiative decay pathways. The highly efficient carrier transport and separation can also greatly reduce the 15.3% generation of CuO compared to Cu2O/g-C3N4. The more negative reduction potential further promoted the ROS generation for sterilization. In addition, the loading of Cu2O on 2D C/CCN can reduce the contact area between Cu2O and solution and then slow the release rate of cuprous ions by 75% compared to Cu2O. Therefore, Cu2O/C/CCN has great potential for practical antifouling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号