首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
功率六分支同轴人字齿轮传动是某船舶动力传输系统的重要组成部分,为了对船舶动力系统的振动噪声和动态载荷进行评估,需要开展功率六分支同轴人字齿轮传动系统的动态特性与均载特性研究。本文采用集中参数法建立了含时变啮合刚度和传动误差的扭转振动模型,并采用解析法求解动力学方程;依据齿轮副沿啮合线的相对振动响应,给出了动载系数与均载系数计算公式;分析了输入轴、双联齿轮轴及输出轴的扭转刚度对传动系统动载特性和均载特性的影响。结果表明:输入轴扭转刚度对系统均载特性影响较大;双联齿轮轴扭转刚度对分扭级和并车级的均载特性均有影响,且随着双联轴扭转刚度增加,动载系数均变大;输出轴扭转刚度对传动系统各分支动载系数几乎没有影响。  相似文献   

2.
为了正确评估齿轮传动系统齿根弯曲疲劳寿命,以风力发电机齿轮箱为研究对象,以轮齿的线性强度退化表征疲劳效应,建立系统寿命蒙特卡洛仿真模型。模型全面考虑轮齿强度的随机特性,由轮齿转动带来的系统结构时变特性,轮齿的强度退化引起的系统抗力时变特性,齿轮传动系统失效相关特性以及各特性之间的耦合作用。在模拟载荷谱下,分析750 kW风力发电机齿轮箱传动系统疲劳寿命的分布,得到各齿轮和齿轮传动系统的寿命分布参数。  相似文献   

3.
周志刚  秦大同  杨军 《太阳能学报》2014,35(7):1183-1190
针对风电齿轮传动系统在复杂随机风载下运行的特点,运用加权最小二乘支持向量机(Weight Sparse Least Squares Support Vector Machines,SLS-SVM)方法建立风场随机风速模型,进而得到随机风引起的系统外部载荷激励。建立考虑齿轮时变啮合刚度、综合啮合误差、滚动轴承变刚度的风电齿轮传动系统的平移-扭转动力学模型,求得传动系统各齿轮副的动态啮合力和各支承轴承的动态接触力及相应的应力时间历程。应用雨流计数法统计循环参量,结合Goodman公式将工作循环应力水平按等寿命原则转换为对称循环下的疲劳应力谱。基于Palmgren-Miner线性累积损伤法则和材料P-S-N(失效概率-应力-循环次数)曲线,预测风电齿轮传动系统各齿轮和轴承的疲劳寿命。为风力发电机齿轮传动系统动态疲劳寿命预测提供了理论方法。  相似文献   

4.
为正确评估齿轮传动系统齿面接触疲劳寿命,以2 MW风力发电机齿轮传动系统为研究对象,引入风场风速变化规律并选用weibull分布建立随机风速模型。考虑外部风载以及由齿轮、轴承刚度等引起的内部载荷激励,建立行星齿轮传动系统平移-扭转动力学模型,求得传动系统各齿轮副动态啮合力并计算相应的应力历程。针对齿轮传动强度及受载随机性的特点,以轮齿的强度退化表征疲劳效应,基于非线性疲劳损伤累积理论建立剩余强度模型,在传统应力-强度干涉理论的基础上,得到随机风载作用下齿轮传动系统动态可靠度功能函数,通过摄动法对零部件的动态可靠度变化曲线进行描述。结果表明:在强度退化和随机载荷联合作用下,风力机系统各齿轮疲劳可靠度随服役时间出现逐渐下降的趋势,且服役前期可靠度下降趋势较快,中后期下降趋势逐渐减缓,强度退化形式及载荷大小影响着可靠度的变化趋势。该模型反映了齿轮传动系统可靠度随服役时间的变化规律,为产品的可靠性设计及疲劳寿命预测提供了参考。  相似文献   

5.
抑制风电机组传动系统的扭振,对于降低系统疲劳载荷、提高机组寿命具有重要意义。文章通过直接控制传动系统的扭角来抑制系统扭振,考虑非线性不确定因素,从功率的角度建立扭角数学模型。由两质量块模型得到功率和扭角的正相关关系,在此基础上,提出一种扭角参考值给定方法。采用改进的自抗扰控制策略补偿传动系统的未知扰动,将系统线性化,并通过非线性状态误差反馈将扭角给定值转化为功率给定值,进而抑制系统扭振。改进自抗扰控制参数调节简单,对扰动补偿更精确,提高了控制器的性能。仿真结果表明,所提出的抑制策略可以明显减小传动系统在阶跃风况和湍流风况下的扭振。  相似文献   

6.
为了研究风力机高速级齿轮传动系统非线性动力学响应,采用集中参数法建立16自由度齿轮-转子-滚动轴承弯扭耦合非线性动力学模型。该模型考虑时变啮合刚度、传递误差、齿侧间隙、齿轮偏心及齿面摩擦等非线性因素,应用Runge-Kutta算法对系统的微分方程进行求解,结合系统时域图、FFT频谱图、相图、Poincaré截面图和三维频谱图,分析齿侧间隙与偏心量对系统响应的影响。结果表明,由于弯扭耦合的作用,齿侧间隙和偏心量均对系统的扭转振动有明显影响。随着齿侧间隙增大,系统的扭转振动角位移增大,但各频率成分未发生明显改变。应选择合适的齿侧间隙,以减小系统的振动响应幅值、倍频和随机谱成分。随着齿轮偏心量增大,齿轮在扭转方向上振动幅值的波动较大,从动轴转频幅值激增,系统由周期运动渐变为混沌运动,因此在系统设计阶段应尽量避免齿轮偏心现象的出现。  相似文献   

7.
建立风电齿轮传动系统的动力学模型,考虑风载和齿轮系统设计参数的随机性,利用随机抽样法和Runge-Kutta法求解系统的动态响应,经统计分析得到各齿轮传动件动态啮合力的统计特征。根据雨流计数原理,将各齿轮传动件动态啮合力的时间历程转化为一系列变幅疲劳载荷谱,采用Geber二次曲线等效方法计算得到相应的等效应力幅值和频次。应用概率疲劳累计损伤理论,建立风电传动系统及其齿轮传动件的动力可靠度模型。计算得到各参数随机变异时系统动力可靠度随时间的变化规律,分析参数随机性对齿轮传动件动力可靠度的影响,并将计算结果与Monte-Carlo法的计算结果进行对比,为风电齿轮传动系统基于动力可靠度的优化设计提供了参考。  相似文献   

8.
程跃琳  杨欣  李赛力  黄维 《柴油机》2022,44(4):50-55
为了研究不同齿轮接触力计算方法对热气机振动响应计算的影响,用多体动力学软件建立其传动系统的刚柔混合多体动力学模型,并通过模态分析验证缩减模型的正确性。分别使用Weber-Banaschek法以及有限元缩减模型的柔性齿轮有限元法进行齿轮时变啮合刚度计算,将不同齿轮时变啮合刚度的热气机整机机脚振动计算值与实测值进行对比,结果表明:采用Weber-Banaschek法计算得到的齿轮啮合刚度误差较大(13.5%);采用有限元缩减模型的柔性齿轮有限元法计算得到的齿轮啮合刚度误差较小(2.1%),其与理论值更接近。  相似文献   

9.
人字齿轮具有重合度高、承载能力大等优点,多用于重载、可靠性要求高的设备中。综合采用集中参数法、多体动力学法和有限元法等手段,建立了多平行轴式人字齿轮功率分流传动系统的时变非线性动力学模型,定量分析了内部激励下系统中所有人字齿轮的左右侧动态传动误差波动、齿轮动态啮合力、齿轮中心运动轨迹及轴承力等振动响应特性。结果表明:系统中人字齿轮左右半段存在偏载,是造成系统振动与噪声的根源所在。  相似文献   

10.
廖高华  乌建中 《太阳能学报》2016,37(11):2785-2791
分析疲劳加载过程中摆锤受叶片振动影响的运动规律,利用能量法进行系统动力参数匹配计算,设计一套摆锤共振型大型风力机叶片疲劳加载系统。利用激光测距传感器获取加载点振幅为控制参数,以振幅偏差为偏差变化率输入,加载频率为输出建立模糊控制系统,控制器对振幅变化数据进行采集、存储与分析,并搜索跟踪共振频率,驱动变频电机实现叶片等幅稳定振动。现场试验结果表明,叶片加载载荷更均匀,控制过程稳定可靠,共振时叶片加载点振幅误差保持在±5%之内,为风力机叶片疲劳加载提供了理论基础与试验依据。  相似文献   

11.
为研究大容量双馈风电机组在脉动风速、齿轮时变啮合特性和电网扰动等多因素耦合作用下传动系统的动态响应特性,在Matlab/Simulink平台上,采用集中质量法建立了机组传动系统弯扭耦合动力学模型,并结合双馈风电机组运行及控制模型,形成机组传动系统的机电耦合模型,分析了机组在多种脉动风速及其与电网对地短路故障同时作用条件下传动系统的动态响应特性。计算结果表明:机组传动系统对低频振动频率具有欠阻尼特性,当脉动风速的脉动频率接近传动系统的一阶固有频率时会与传动系统产生共振;通过对比有无齿轮时变啮合激励,可以甄别传动系统与齿轮啮合激励的共振点;电网三相对地短路故障引起的传动系统振动最为剧烈,其最大振动峰峰值随风速的增加非线性增大,随风速湍流强度的增加线性增大。  相似文献   

12.
质量不平衡对齿轮传动系统振动影响的数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对于大型高速齿轮转子系统,质量不平衡会产生周期的离心惯性力,使系统产生振动,影响强度和寿命。基于MSC.ADAMS建立齿轮系统弯扭耦合振动模型,并考虑了啮合型耦合和转子动力型耦合两种情况,将齿轮做刚性化处理而轴做柔性化处理。采用多柔体动力学分析方法仿真得出齿轮在正常啮合和齿轮质量不平衡引起的转子涡动条件下的齿轮动态激励力和齿轮中心的涡动轨迹,以此进行分析比较,为齿轮箱动力学分析提供依据。在MSC.Patran中建立齿轮箱动力分析有限元模型,利用MSC.Nastran对齿轮箱进行瞬态动力学分析,得到齿轮正常啮合和质量不平衡引起的涡动两种工况下箱体的振动特性。  相似文献   

13.
考虑多种内、外部因素通过仿真获得风力发电机正常制动时齿轮箱的外部载荷。采用集中质量参数法在考虑齿轮时变啮合刚度、啮合阻尼、综合啮合误差、齿侧间隙和齿面滑动摩擦力等因素的情况下建立风力发电机齿轮传动系统的纯扭转非线性动力学模型;利用数值方法求得传动系统在制动工况下各齿轮副沿啮合线的振动位移和动态啮合力等;分析齿侧间隙和齿面滑动摩擦力对风电齿轮传动系统动力学的影响。  相似文献   

14.
风电机组传动系统的柔性对机组的动力特性影响较大。本文利用有限单元法,根据多柔体动力学基本理论,构建考虑风电机组齿轮箱、联轴器、发电机等传动系统柔性的分析模型;根据模态分析理论,提出一种基于矢量位移云图筛选扭振频率的方法,获取风电传动系统低频至高频的扭振模态;利用坎贝尔图以及能量比判别系统共振点。结果表明,建立多柔体动力学模型对准确评估风电机组传动系统的动态特性具有重要作用。风电机组传动系统在1.33、39.16和241.30 Hz等不同激励频率载荷作用下,分别在齿轮主轴、发电机转子和二级太阳轮轴等不同位置存在共振模态。该计算结果与工程实际高度吻合,该分析方法可为风电机组传动系统优化设计提供理论依据。  相似文献   

15.
针对双馈式风电机组柔性传动系统运行稳定性问题,采用集中参数质量法建立风电机组柔性传动模型,在考虑外部风载、齿轮副啮合刚度、啮合阻尼和综合啮合误差激励条件下,建立了齿轮箱内部各级齿轮副动力学方程;以市场成熟的1.5MW双馈式风电机组为计算对象,计算了柔性传动系统固有频率和齿轮箱各级齿轮动态啮合力;通过雨流计数法对齿轮动态啮合力进行数据分析,研究了传动系统运行稳定性。研究结果表明,齿轮副啮合力呈现高频波动,具有很强的时变特性,通过雨流计数分析,动态啮合力幅值与频次成正态分布规律;传动系统一阶扭转振动频率与风轮面内一阶摆阵频率偏差为6.8%,通过降低主轴质量约9.5%,提高了传动系统一阶扭转频率约11.5%,与风轮面内一阶摆阵频率偏差达16.4%。研究结果可为风电机组传动系统设计、轴承寿命计算和可靠性研究提供参考。  相似文献   

16.
建立了适用于汽轮发电机组轴系扭振与叶片振动耦合分析的转子-叶片耦合扭振模型,并将该模型应用于某国产600MW汽轮发电机组末级长叶片的分析计算中。基于该模型采用Riccati传递矩阵法和Newmark-β法相结合的方法得到轴系扭振故障时叶片的位移响应曲线,利用Ansys软件计算得到叶片位移-应力关系曲线,确定了叶片振动的危险截面,得到叶片危险点的应力历程,为转子和叶片的扭振疲劳寿命损耗在线分析和安全性评估奠定了基础。  相似文献   

17.
分析疲劳试验过程中叶片加载的运动规律,利用能量法对能量耗散进行计算及动力参数匹配,设计一套叶片电磁脉冲式疲劳加载系统。采用短时能量补充加载,瞬时最小势能原理导出叶片在时变载荷作用下的多自由度运动方程,建立仿真模型并对脉冲激励叶片响应数值进行仿真。利用激光测距传感器获取加载点振幅为控制参数,控制器基于SPWM(Sinusoidal Pulse Width Modulation)脉冲控制方式,搜索跟踪共振频率,实现叶片等幅稳定振动。现场试验表明,叶片脉冲加载载荷均匀,控制过程稳定可靠,共振时叶片加载点振幅误差保持在±5%之内,试验效率及系统寿命得到提高,可为风力机叶片疲劳实验提供一种新的加载方式。  相似文献   

18.
《可再生能源》2013,(3):46-50
文章介绍了风电机组传动系统结构和布置形式,应用Solidworks建立传动系统模型,对机组进行全工况载荷测试。分析行星架受力情况和运行状态,应用Workbench对行星架进行单位载荷静力学分析,并依据疲劳积累损伤理论及应用Fe-safe对行星架进行疲劳寿命分析,将分析结果进行后处理,得到行星架疲劳寿命云图及其剩余循环次数。最后分析了行星架疲劳失效主要原因,建立了行星架健康管理档案。  相似文献   

19.
大功率风电机组传动链关键部件柔性直接影响机组扭振特性及疲劳寿命,提出考虑齿轮柔性与啮合柔性的传动链有限元建模及扭振特性分析。首先,基于实际双馈风电机组传动链结构、材料属性与几何参数,考虑齿轮箱内齿轮柔性与齿轮啮合柔性,结合叶片、轮毂、主轴和发电机转子,建立风电机组传动链多柔体有限元模型。其次,基于有限元模态分析理论,提出一种基于矢量位移云图筛选扭振频率的分析方法,获取计及齿轮全柔性影响的风电机组中、低频范围的扭振模态,并与不同传动链模型结果进行比较,验证该文所建模型的有效性。最后,分别分析不同齿轮柔性和齿轮啮合柔性对传动链扭振频率和模态的影响。结果表明,该文所建模型不仅能反映传动链扭振固有的低频频率,而且能反映弯扭耦合产生的中频扭振频率,且相比齿轮啮合柔性,齿轮柔性系数影响传动链高频扭振特性明显。  相似文献   

20.
针对差动调速齿轮传动系统的刚体动力和振动特性进行研究,考虑传动系统的实际工作状况和主要内外部参数激励,建立差动调速齿轮传动系统的非线性动力学模型和振动微分方程,在SIMULINK中搭建差动调速齿轮传动系统数值模型,仿真分析其动态特性。结果表明:相对于齿侧间隙为零,齿侧间隙不等于零则使高频振动幅值波动更明显,同时加大了对低频振动的影响,表现出明显的非线性特征,因此在差动调速齿轮传动系统的动态设计和运行过程中,应注意控制和监测齿侧间隙值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号