首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
刘栋  魏霞  王维庆  叶家豪  任俊 《陕西电力》2021,(6):53-59,123
准确的风电功率预测可以有效地保证电力系统的安全运行,进而影响电网的电力调度,所以高精度的预测方法变得至关重要。针对极限学习机(ELM)随机产生输入权值和阈值导致回归模型不稳定性与预测结果不准确性,以及风电波动性和间歇性等问题,提出一种基于麻雀算法(SSA)优化极限学习机的组合预测模型(SSA-ELM)。利用收敛速度快、精度高、稳定性好的SSA对ELM的权值和阈值进行寻优,实现了对风电功率的精确预测。仿真结果表明,所提出的SSA-ELM模型的预测精度较高、泛化能力强,能够为风电的功率预测及并网安全的稳定运行提供决策支持。  相似文献   

2.
李青  张新燕  马天娇  马涛  王衡  尹红升 《电网技术》2021,45(8):3070-3078
提出一种全新的集合强化物体碰撞优化算法(enhanced colliding bodies optimization,ECBO)、变分模态分解(variational mode decomposition,VMD)、小波核极限学习机(wavelet kernel extreme learning machine,WKE...  相似文献   

3.
为降低风电功率序列波动性并提高风电功率预测精度,提出一种基于SSA-VMD-SE-KELM和蒙特卡洛法的组合风电功率区间预测模型。采用麻雀搜索算法(SSA)优化后的变分模态分解(VMD)算法将功率序列分解为理想数量子序列,通过计算样本熵(SE)对其重构,得到新子序列分别建立核极限学习机(KELM)点预测模型,叠加各点预测结果得到最终点预测结果及功率误差序列,使用蒙特卡洛法随机抽样得到对应置信度下的预测区间。以实际采集到的历史数据为例进行预测,实验结果表明:与传统模型相比,此模型所得功率预测区间紧密跟随风电功率变化趋势,其区间覆盖率更高、平均宽度更窄。  相似文献   

4.
针对风电功率随机波动性导致特征信息难以完全挖掘的问题以及特征信息丢失导致预测误差大的问题,提出一种基于动态模态分解-果蝇算法优化极限学习机风电功率短期预测方法.首先采用主成分分析对样本数据进行提取;再采用动态模态分解算法对主成分提取其模态特征;再将主成分与模态特征进行拼接构成新的样本数据集;最后采用果蝇算法优化极限学习...  相似文献   

5.
针对传统的超短期风电功率预测方法难以应对大量强波动性数据,以及对时间序列处理能力有限的问题,提出了一种深度学习模型WOA-AM-BiLSTM对风电功率进行短期预测。使用双向长短期记忆网络可提取时序数据的双向信息,选择性地增强重要特征信息的权重,再利用鲸鱼优化算法进行超参数寻优使AM-BiLSTM模型预测误差最小。通过软件仿真验证了所提风电功率预测模型具有较高的预测精度。  相似文献   

6.
针对风电功率单变量处理方法及预测模型拟合能力不足的问题,提出了一种多变量相空间重构(multivariate phase space reconstruction,MPSR)和鲸鱼优化算法深度极限学习机(whale optimization algorithm-deep extreme learning machine,WOA-DELM)的短期风电功率组合预测方法。首先,利用Pearson相关系数筛选出与风电功率相关的气象因素,并将其与风电功率序列组成多变量时间序列;其次,利用C-C法确定每一时间序列的最优嵌入维数和时间延迟,实现多变量相空间重构;然后,将多变量相空间重构建立的数据集输入到深度极限学习机(deep extreme learning machine,DELM)模型中,同时利用鲸鱼优化算法(whale optimization algorithm,WOA)对DELM的权值参数进行优化,得到WOA-DELM预测模型,以此预测短期风电功率,最终得到预测结果。将平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error...  相似文献   

7.
针对风能的波动性和间歇性,提出了一种基于改善集成经验模式分解(MEEMD)和最小二乘支持向量机(LSSVM)的风电功率超短期预测方法,首先利用MEEMD将功率序列根据频率高低分解为特征不同的本征模态分量(IMF),然后计算各IMF的样本熵,合并熵值相似的IMF分量。对合并之后的各IMF分量分别进行LSSVM子模型建模,最后将各分量建模结果叠加得到功率预测曲线。基于大连风电场现场数据的检验结果说明,该方法预测精度较高且运算时间合理,适用于工程上风电功率的预测。  相似文献   

8.
针对时序下风电功率的随机性和波动性问题,提出一种基于自适应智能灰色系统(SAIGM)和遗传算法优化核极限学习机(GA-KELM)的混合风电功率预测模型。首先,以灰色关联性分析不同季度下风向量与数值气象预报(NWP)对风电功率的影响为基础,采用自适应智能灰色系统预测风速,并将预测的风速与相连时序下的风向和NWP有效整合作为预测样本。其次,利用遗传算法优化核极限学习机搭建风电功率预测模型,并将实际风向量与NWP有效整合作为预测模型的训练样本。最后,利用优化后的预测模型实现不同季节的风电功率预测。实验表明混合预测模型可实现对风电功率的短期预测,预测结果具有准确性和可靠性。  相似文献   

9.
曾亮  雷舒敏  王珊珊  常雨芳 《电网技术》2021,45(12):4701-4710
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(...  相似文献   

10.
传统的点预测难以描述风电功率的随机性和不确定性。针对点预测的不足,提出了基于改进型鲸鱼优化算法和快速学习网(IWOA-FLN)的区间预测模型。首先,通过改进收敛因子、加入自适应惯性权重和混沌搜索策略提高算法的收敛速度和精度;然后,根据上下限估计法提出了新的评价指标;最后,将新的评价指标作为目标函数,使用改进后的鲸鱼优化算法优化FLN网络参数从而得到最后的预测区间。实例证明,所提方法可以有效地提高区间覆盖率、降低区间带宽,具有较强的实际意义。  相似文献   

11.
对光伏发电功率进行准确预测,可减弱其并入电网的波动性,有利于电网对新能源发电的调度。基于主成分分析法和局部均值分解相结合的鲸鱼优化算法,构造优化后的极限学习机模型,并使用该模型对光伏发电短期功率进行预测。先用主成分分析法对影响光伏发电功率的因素进行筛选,并使用局部均值分解对选取的主要影响因素及发电功率序列数据进行分解;然后基于子序列使用鲸鱼优化建立极限学习机模型;最后将各序列短期预测结果叠加获得光伏发电短期功率预测结果。通过仿真验证及对比分析,说明该预测方法具有较高的预测精准度。  相似文献   

12.
基于样本熵和极端学习机的超短期风电功率组合预测模型   总被引:4,自引:0,他引:4  
该文提出一种经验模态分解(empirical mode decomposition,EMD)–样本熵(sample entropy,SE)和极端学习机(extreme learning machine,ELM)相结合的风电功率超短期预测方法。该方法首先利用EMD-SE将风电功率时间序列分解为一系列复杂度差异明显的风电子序列;其次利用最小二乘支持向量机(least squares support vector machine,LSSVM)、极端学习机和经原始岭回归(primal ridgeregression,PRR)改进的极端学习机(PRR-ELM)对各子序列建立组合预测模型,并采用交叉验证法和重构相空间法确定各模型的参数和输入向量维数,以提高各组合模型的预测精度;最后以某一风电场实际采集的数据为算例,结果表明基于EMD-SE理论的ELM和PRR-ELM组合预测模型在预测精度和训练速度上都明显优于EMD-SE理论和LSSVM的组合模型,且其预测结果更接近于真实值,为实现风电功率在线的较高精度超短期预测提供了可能。  相似文献   

13.

针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。

  相似文献   

14.
针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variationalmodedecomposition, VMD)和改进松鼠觅食算法优化核极限学习机(improvedsquirrelsearchalgorithm optimization kernel extreme learning machine, ISSA-KELM)的预测模型。首先,利用高斯混合模型(Gaussian mixture model, GMM)将光伏发电功率数据进行聚类,得到不同天气类型下的相似日样本。其次,利用VMD对原始光伏发电功率序列进行平稳化处理,得到若干个规律性较强的子序列。然后,对不同子序列构建KELM预测模型,并使用ISSA优化KELM的核参数和正则化系数。最后,将不同子序列的预测值进行重构,得到最终预测结果。结合实际算例,结果表明:所提出的VMD-ISSA-KELM模型在不同天气条件下均能得到满意的预测精度,且明显优于其他模型,验证了其有效性和优越性。  相似文献   

15.
卷取温度控制精度是影响带钢产品性能的主要因素之一,提高卷取温度控制精度和保证卷取命中率是热轧领域的重点问题.针对某钢厂现有的卷取温度设定模型中存在个别钢种命中率低的问题,结合数据挖掘及现场专家经验,提出了一种基于灰狼优化极限学习机的新建模思路,并引入Henon映射、小孔成像策略和权重因子策略来改进灰狼算法,建立了基于改...  相似文献   

16.
滚动轴承在旋转机械中发挥着重要作用,若出现故障,轻则引起设备停机,重则危及现场人员生命安全,因此有必要对其进行故障诊断。针对滚动轴承故障特征难以提取,传统分类方法正确率不高的问题,本文提出一种基于集合经验模态分解(EEMD)能量熵和金豺优化算法(GJO)优化核极限学习机(KELM)的故障诊断方法,实现了提取滚动轴承故障特征并正确分类的目标。通过实验数据进行验证,该方法能够提取到滚动轴承原始信号中隐含的故障信息特征,其诊断正确率高达98.47%。  相似文献   

17.
传统大坝预测方法难以适应坝体变形序列的高维非线性特征,且仅能以点值的形式预测大坝变形,未能有效量化由数据随机噪声、输入样本的主观确定、参数的随机选择等引起的结果不确定性。针对上述问题,提出了基于Bootstrap和改进布谷鸟优化多核极限学习机(ICS-MKELM)算法的大坝变形预测模型,实现在精确预测大坝变形点值的同时,通过区间形式量化预测值的不确定性。首先,建立基于高精度多核极限学习机(MKELM)的大坝变形预测模型,该模型集成了核极限学习机(KELM)高效处理强非线性回归问题的优势和混合核泛化、学习能力强的特点,同时采用基于惯性权重和混沌理论改进的布谷鸟搜索(ICS)算法对多核极限学习机中核参数及正则系数进行优化,弥补模型易陷入局部最优的不足;其次,引入Bootstrap区间预测方法对模型和数据造成的不确定影响进行量化;最后,将所提模型应用于某实际大坝工程的变形预测,分析了不同训练样本数对模型预测精度的影响,同时通过与五种常用的预测算法进行对比,验证了本文模型具有一致性和优越性。  相似文献   

18.
针对碳交易过程中碳价序列的非线性和非平稳性,提出一种基于多模式分解、样本熵、鲸鱼优化(whale optimization algorithm,WOA)和长短期记忆神经网络(long short-term memory,LSTM)的组合预测模型.首先,使用奇异谱分解、变分模态分解和完全集合经验模态分解,分别分解原始碳价...  相似文献   

19.
提出一种基于鲸鱼算法优化极限学习机的微电网故障诊断方法。首先利用小波包分解对三相故障电压进行分析,计算小波包能量熵组成特征向量作为数据样本;然后通过鲸鱼算法优化极限学习机建立诊断模型对故障类型进行识别和诊断。最后利用鲸鱼算法优化极限学习机的输入权值和隐层神经元阈值,解决了输入权值和隐层神经元阈值随机初始化易影响网络性能的问题,可进一步提高网络的学习速度和泛化能力,有利于进行全局寻优。仿真结果表明,与BP神经网络、RBF神经网络和ELM相比,基于鲸鱼算法优化极限学习机建立的故障诊断模型学习速度更快、泛化能力更强、识别精度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号