首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We describe a new incremental algorithm for training linear threshold functions: the Relaxed Online Maximum Margin Algorithm, or ROMMA. ROMMA can be viewed as an approximation to the algorithm that repeatedly chooses the hyperplane that classifies previously seen examples correctly with the maximum margin. It is known that such a maximum-margin hypothesis can be computed by minimizing the length of the weight vector subject to a number of linear constraints. ROMMA works by maintaining a relatively simple relaxation of these constraints that can be efficiently updated. We prove a mistake bound for ROMMA that is the same as that proved for the perceptron algorithm. Our analysis implies that the maximum-margin algorithm also satisfies this mistake bound; this is the first worst-case performance guarantee for this algorithm. We describe some experiments using ROMMA and a variant that updates its hypothesis more aggressively as batch algorithms to recognize handwritten digits. The computational complexity and simplicity of these algorithms is similar to that of perceptron algorithm, but their generalization is much better. We show that a batch algorithm based on aggressive ROMMA converges to the fixed threshold SVM hypothesis.  相似文献   

2.
Traditional nonlinear manifold learning methods have achieved great success in dimensionality reduction and feature extraction, most of which are batch modes. However, if new samples are observed, the batch methods need to be calculated repeatedly, which is computationally intensive, especially when the number or dimension of the input samples are large. This paper presents incremental learning algorithms for Laplacian eigenmaps, which computes the low-dimensional representation of data set by optimally preserving local neighborhood information in a certain sense. Sub-manifold analysis algorithm together with an alternative formulation of linear incremental method is proposed to learn the new samples incrementally. The locally linear reconstruction mechanism is introduced to update the existing samples’ embedding results. The algorithms are easy to be implemented and the computation procedure is simple. Simulation results testify the efficiency and accuracy of the proposed algorithms.  相似文献   

3.
目的在多标签有监督学习框架中,构建具有较强泛化性能的分类器需要大量已标注训练样本,而实际应用中已标注样本少且获取代价十分昂贵。针对多标签图像分类中已标注样本数量不足和分类器再学习效率低的问题,提出一种结合主动学习的多标签图像在线分类算法。方法基于min-max理论,采用查询最具代表性和最具信息量的样本挑选策略主动地选择待标注样本,且基于KKT(Karush-Kuhn-Tucker)条件在线地更新多标签图像分类器。结果在4个公开的数据集上,采用4种多标签分类评价指标对本文算法进行评估。实验结果表明,本文采用的样本挑选方法比随机挑选样本方法和基于间隔的采样方法均占据明显优势;当分类器达到相同或相近的分类准确度时,利用本文的样本挑选策略选择的待标注样本数目要明显少于采用随机挑选样本方法和基于间隔的采样方法所需查询的样本数。结论本文算法一方面可以减少获取已标注样本所需的人工标注代价;另一方面也避免了传统的分类器重新训练时利用所有数据所产生的学习效率低下的问题,达到了当新数据到来时可实时更新分类器的目的。  相似文献   

4.
In this paper, we introduce a new algorithm for incremental learning of a specific form of Takagi–Sugeno fuzzy systems proposed by Wang and Mendel in 1992. The new data-driven online learning approach includes not only the adaptation of linear parameters appearing in the rule consequents, but also the incremental learning of premise parameters appearing in the membership functions (fuzzy sets), together with a rule learning strategy in sample mode. A modified version of vector quantization is exploited for rule evolution and an incremental learning of the rules' premise parts. The modifications include an automatic generation of new clusters based on the nature, distribution, and quality of new data and an alternative strategy for selecting the winning cluster (rule) in each incremental learning step. Antecedent and consequent learning are connected in a stable manner, meaning that a convergence toward the optimal parameter set in the least-squares sense can be achieved. An evaluation and a comparison to conventional batch methods based on static and dynamic process models are presented for high-dimensional data recorded at engine test benches and at rolling mills. For the latter, the obtained data-driven fuzzy models are even compared with an analytical physical model. Furthermore, a comparison with other evolving fuzzy systems approaches is carried out based on nonlinear dynamic system identification tasks and a three-input nonlinear function approximation example.   相似文献   

5.

针对流数据中概念漂移发生后,在线学习模型不能对分布变化后的数据做出及时响应且难以提取数据分布的最新信息,导致学习模型收敛较慢的问题,提出一种基于在线集成的概念漂移自适应分类方法(adaptive classification method for concept drift based on online ensemble,AC_OE). 一方面,该方法利用在线集成策略构建在线集成学习器,对数据块中的训练样本进行局部预测以动态调整学习器权重,有助于深入提取漂移位点附近流数据的演化信息,对数据分布变化进行精准响应,提升在线学习模型对概念漂移发生后新数据分布的适应能力,提高学习模型的实时泛化性能;另一方面,利用增量学习策略构建增量学习器,并随新样本的进入进行增量式的训练更新,提取流数据的全局分布信息,使模型在平稳的流数据状态下保持较好的鲁棒性. 实验结果表明,该方法能够对概念漂移做出及时响应并加速在线学习模型的收敛速度,同时有效提高学习器的整体泛化性能.

  相似文献   

6.
Cluster analysis is used to explore structure in unlabeled batch data sets in a wide range of applications. An important part of cluster analysis is validating the quality of computationally obtained clusters. A large number of different internal indices have been developed for validation in the offline setting. However, this concept cannot be directly extended to the online setting because streaming algorithms do not retain the data, nor maintain a partition of it, both needed by batch cluster validity indices. In this paper, we develop two incremental versions (with and without forgetting factors) of the Xie-Beni and Davies-Bouldin validity indices, and use them to monitor and control two streaming clustering algorithms (sk-means and online ellipsoidal clustering), In this context, our new incremental validity indices are more accurately viewed as performance monitoring functions. We also show that incremental cluster validity indices can send a distress signal to online monitors when evolving structure leads an algorithm astray. Our numerical examples indicate that the incremental Xie-Beni index with a forgetting factor is superior to the other three indices tested.  相似文献   

7.
针对目前室内指纹定位算法存在实时性差、对动态环境适应性不足的问题,提出一种新的基于半监督极限学习机的定位算法.该算法首先通过半监督极限学习机建立初始化位置估计模型,然后利用新增的半标记数据对原定位模型进行动态调整,最后为新增训练数据分配合适惩罚权重,使模型具有时效机制.仿真结果表明,该定位算法在保证定位实时性的同时提高了对动态环境的适应性.  相似文献   

8.
一种新的增量决策树算法   总被引:1,自引:0,他引:1  
对于数据增加迅速的客户行为分析、Web日志分析、网络入侵检测等在线分类系统来说,如何快速适应新增样本是确保其分类正确和可持续运行的关键。该文提出了一种新的适应数据增量的决策树算法,该算法同贝叶斯方法相结合,在原有决策树的基础上利用新增样本迅速训练出新的决策树。实验结果表明,提出的算法可以较好的解决该问题,与重新构造决策树相比,它的时间开销更少,且具有更高的分类准确率,更适用于在线分类系统。  相似文献   

9.
Lazy Learning of Bayesian Rules   总被引:19,自引:0,他引:19  
The naive Bayesian classifier provides a simple and effective approach to classifier learning, but its attribute independence assumption is often violated in the real world. A number of approaches have sought to alleviate this problem. A Bayesian tree learning algorithm builds a decision tree, and generates a local naive Bayesian classifier at each leaf. The tests leading to a leaf can alleviate attribute inter-dependencies for the local naive Bayesian classifier. However, Bayesian tree learning still suffers from the small disjunct problem of tree learning. While inferred Bayesian trees demonstrate low average prediction error rates, there is reason to believe that error rates will be higher for those leaves with few training examples. This paper proposes the application of lazy learning techniques to Bayesian tree induction and presents the resulting lazy Bayesian rule learning algorithm, called LBR. This algorithm can be justified by a variant of Bayes theorem which supports a weaker conditional attribute independence assumption than is required by naive Bayes. For each test example, it builds a most appropriate rule with a local naive Bayesian classifier as its consequent. It is demonstrated that the computational requirements of LBR are reasonable in a wide cross-section of natural domains. Experiments with these domains show that, on average, this new algorithm obtains lower error rates significantly more often than the reverse in comparison to a naive Bayesian classifier, C4.5, a Bayesian tree learning algorithm, a constructive Bayesian classifier that eliminates attributes and constructs new attributes using Cartesian products of existing nominal attributes, and a lazy decision tree learning algorithm. It also outperforms, although the result is not statistically significant, a selective naive Bayesian classifier.  相似文献   

10.
以规则库为切入点,提出一个决策规则的批量增量更新算法。为所有新增对象建立一个等价类表,将原有规则库与等价类表进行高效匹配,根据新对象的不同匹配类型分别进行规则更新。该算法既适用于完备数据也适用于不完备数据,且只需访问2遍规则库就可以实现规则更新。理论分析和UCI数据上的比较实验结果都表明该方法优于传统方法。  相似文献   

11.
针对实际应用中数据的批量到达,以及系统的存储压力和学习效率低等问题,提出一种基于信念修正思想的SVR增量学习算法。首先从历史样本信息中提取信念集,根据信念集和新增数据的特点选择相应的信念集建立支持向量回归模型并进行预测;然后对信念集进行修正,调整当前认知状态,使该算法对在线和批处理增量学习都有很好的适应性。在标准数据集上的测试验证了算法的良好性能;在某机场噪声实测数据上的对比实验也表明,该算法的性能明显优于传统学习算法和一般增量学习算法。  相似文献   

12.
刘晓平 《计算机仿真》2005,22(12):76-79
用于知识发现的大部分数据挖掘工具均采用规则发现和决策树分类技术来发现数据模式和规则。该文通过采用基于仿真属性的离散化方法,基于概率统计的未知属性与噪声数据处理方法以及基于误差的剪枝算法,实现了用于自动生成决策树的通用算法模板。利用该模板,决策树算法的设计者可以快速验证为解决特定决策问题而设计的新算法。构造决策树的基本机制是算法的设计者利用其自己定义的公式来初始化通用算法模板。然后利用该系统提供的交互式图形环境,针对不同的决策问题测试该算法,从而找出适合特定问题的算法。  相似文献   

13.
Extracting Hidden Context   总被引:4,自引:0,他引:4  
Concept drift due to hidden changes in context complicates learning in many domains including financial prediction, medical diagnosis, and communication network performance. Existing machine learning approaches to this problem use an incremental learning, on-line paradigm. Batch, off-line learners tend to be ineffective in domains with hidden changes in context as they assume that the training set is homogeneous. An off-line, meta-learning approach for the identification of hidden context is presented. The new approach uses an existing batch learner and the process of contextual clustering to identify stable hidden contexts and the associated context specific, locally stable concepts. The approach is broadly applicable to the extraction of context reflected in time and spatial attributes. Several algorithms for the approach are presented and evaluated. A successful application of the approach to a complex flight simulator control task is also presented.  相似文献   

14.
Fern  Alan  Givan  Robert 《Machine Learning》2003,53(1-2):71-109
We study resource-limited online learning, motivated by the problem of conditional-branch outcome prediction in computer architecture. In particular, we consider (parallel) time and space-efficient ensemble learners for online settings, empirically demonstrating benefits similar to those shown previously for offline ensembles. Our learning algorithms are inspired by the previously published boosting by filtering framework as well as the offline Arc-x4 boosting-style algorithm. We train ensembles of online decision trees using a novel variant of the ID4 online decision-tree algorithm as the base learner, and show empirical results for both boosting and bagging-style online ensemble methods. Our results evaluate these methods on both our branch prediction domain and online variants of three familiar machine-learning benchmarks. Our data justifies three key claims. First, we show empirically that our extensions to ID4 significantly improve performance for single trees and additionally are critical to achieving performance gains in tree ensembles. Second, our results indicate significant improvements in predictive accuracy with ensemble size for the boosting-style algorithm. The bagging algorithms we tried showed poor performance relative to the boosting-style algorithm (but still improve upon individual base learners). Third, we show that ensembles of small trees are often able to outperform large single trees with the same number of nodes (and similarly outperform smaller ensembles of larger trees that use the same total number of nodes). This makes online boosting particularly useful in domains such as branch prediction with tight space restrictions (i.e., the available real-estate on a microprocessor chip).  相似文献   

15.
Business intelligence and bioinformatics applications increasingly require the mining of datasets consisting of millions of data points, or crafting real-time enterprise-level decision support systems for large corporations and drug companies. In all cases, there needs to be an underlying data mining system, and this mining system must be highly scalable. To this end, we describe a new rule learner called DataSqueezer. The learner belongs to the family of inductive supervised rule extraction algorithms. DataSqueezer is a simple, greedy, rule builder that generates a set of production rules from labeled input data. In spite of its relative simplicity, DataSqueezer is a very effective learner. The rules generated by the algorithm are compact, comprehensible, and have accuracy comparable to rules generated by other state-of-the-art rule extraction algorithms. The main advantages of DataSqueezer are very high efficiency, and missing data resistance. DataSqueezer exhibits log-linear asymptotic complexity with the number of training examples, and it is faster than other state-of-the-art rule learners. The learner is also robust to large quantities of missing data, as verified by extensive experimental comparison with the other learners. DataSqueezer is thus well suited to modern data mining and business intelligence tasks, which commonly involve huge datasets with a large fraction of missing data.  相似文献   

16.
In recent years, the use of multi-view data has attracted much attention resulting in many multi-view batch learning algorithms. However, these algorithms prove expensive in terms of training time and memory when used on the incremental data. In this paper, we propose Multi-view Incremental Discriminant Analysis (MvIDA), which updates the trained model to incorporate new data samples. MvIDA requires only the old model and newly added data to update the model. Depending on the nature of the increments, MvIDA is presented as two cases, sequential MvIDA and chunk MvIDA. We have compared the proposed method against the batch Multi-view Discriminant Analysis (MvDA) for its discriminability, order independence, the effect of the number of views, training time, and memory requirements. We have also compared our method with single-view Incremental Linear Discriminant Analysis (ILDA) for accuracy and training time. The experiments are conducted on four datasets with a wide range of dimensions per view. The results show that through order independence and faster construction of the optimal discriminant subspace, MvIDA addresses the issues faced by the batch multi-view algorithms in the incremental setting.  相似文献   

17.
Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each example according to a current hypothesis. Then the learner updates the hypothesis, if necessary, based on the correct classification of the example. One natural measure of the quality of learning in this setting is the number of mistakes the learner makes. For suitable classes of functions, learning algorithms are available that make a bounded number of mistakes, with the bound independent of the number of examples seen by the learner. We present one such algorithm that learns disjunctive Boolean functions, along with variants for learning other classes of Boolean functions. The basic method can be expressed as a linear-threshold algorithm. A primary advantage of this algorithm is that the number of mistakes grows only logarithmically with the number of irrelevant attributes in the examples. At the same time, the algorithm is computationally efficient in both time and space.  相似文献   

18.
Learning model trees from evolving data streams   总被引:2,自引:0,他引:2  
The problem of real-time extraction of meaningful patterns from time-changing data streams is of increasing importance for the machine learning and data mining communities. Regression in time-changing data streams is a relatively unexplored topic, despite the apparent applications. This paper proposes an efficient and incremental stream mining algorithm which is able to learn regression and model trees from possibly unbounded, high-speed and time-changing data streams. The algorithm is evaluated extensively in a variety of settings involving artificial and real data. To the best of our knowledge there is no other general purpose algorithm for incremental learning regression/model trees able to perform explicit change detection and informed adaptation. The algorithm performs online and in real-time, observes each example only once at the speed of arrival, and maintains at any-time a ready-to-use model tree. The tree leaves contain linear models induced online from the examples assigned to them, a process with low complexity. The algorithm has mechanisms for drift detection and model adaptation, which enable it to maintain accurate and updated regression models at any time. The drift detection mechanism exploits the structure of the tree in the process of local change detection. As a response to local drift, the algorithm is able to update the tree structure only locally. This approach improves the any-time performance and greatly reduces the costs of adaptation.  相似文献   

19.
Most data-mining algorithms assume static behavior of the incoming data. In the real world, the situation is different and most continuously collected data streams are generated by dynamic processes, which may change over time, in some cases even drastically. The change in the underlying concept, also known as concept drift, causes the data-mining model generated from past examples to become less accurate and relevant for classifying the current data. Most online learning algorithms deal with concept drift by generating a new model every time a concept drift is detected. On one hand, this solution ensures accurate and relevant models at all times, thus implying an increase in the classification accuracy. On the other hand, this approach suffers from a major drawback, which is the high computational cost of generating new models. The problem is getting worse when a concept drift is detected more frequently and, hence, a compromise in terms of computational effort and accuracy is needed. This work describes a series of incremental algorithms that are shown empirically to produce more accurate classification models than the batch algorithms in the presence of a concept drift while being computationally cheaper than existing incremental methods. The proposed incremental algorithms are based on an advanced decision-tree learning methodology called “Info-Fuzzy Network” (IFN), which is capable to induce compact and accurate classification models. The algorithms are evaluated on real-world streams of traffic and intrusion-detection data.  相似文献   

20.
Active Sampling for Class Probability Estimation and Ranking   总被引:1,自引:0,他引:1  
In many cost-sensitive environments class probability estimates are used by decision makers to evaluate the expected utility from a set of alternatives. Supervised learning can be used to build class probability estimates; however, it often is very costly to obtain training data with class labels. Active learning acquires data incrementally, at each phase identifying especially useful additional data for labeling, and can be used to economize on examples needed for learning. We outline the critical features of an active learner and present a sampling-based active learning method for estimating class probabilities and class-based rankings. BOOTSTRAP-LV identifies particularly informative new data for learning based on the variance in probability estimates, and uses weighted sampling to account for a potential example's informative value for the rest of the input space. We show empirically that the method reduces the number of data items that must be obtained and labeled, across a wide variety of domains. We investigate the contribution of the components of the algorithm and show that each provides valuable information to help identify informative examples. We also compare BOOTSTRAP-LV with UNCERTAINTY SAMPLING, an existing active learning method designed to maximize classification accuracy. The results show that BOOTSTRAP-LV uses fewer examples to exhibit a certain estimation accuracy and provide insights to the behavior of the algorithms. Finally, we experiment with another new active sampling algorithm drawing from both UNCERTAINTY SAMPLING and BOOTSTRAP-LV and show that it is significantly more competitive with BOOTSTRAP-LV compared to UNCERTAINTY SAMPLING. The analysis suggests more general implications for improving existing active sampling algorithms for classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号