首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 82 毫秒
1.
为探讨莲子淀粉糊及莲子淀粉-胶体体系的流变特性,使用流变仪研究了不同莲子淀粉乳浓度和添加不同亲水性胶体的莲子淀粉糊的流变特性。静态流变特性研究结果表明,莲子淀粉糊和添加胶体的莲子淀粉糊均为典型的非牛顿、时间依赖剪切变稀和触变性的流体,其流变特性曲线可用Herschel–Bulkley方程进行较好的拟合。随淀粉乳浓度和瓜尔豆胶(guar)、黄原胶(xan)添加量的增大,莲子淀粉糊的屈服应力τ0增大,而添加羧甲基纤维素(CMC)、卡拉胶(car)和海藻酸钠(alg)可使淀粉糊的流动性增强。动态流变特性研究结果表明,莲子淀粉糊储能模量(G')、损耗模量(G″)随莲子淀粉乳浓度增大而增大,且G'大于G″。添加CMC、alg能提高莲子淀粉糊的黏弹性,而添加guar和低浓度的xan、car则降低莲子淀粉糊的黏弹性。  相似文献   

2.
超高压处理对莲子淀粉理化特性的影响   总被引:1,自引:0,他引:1  
目的:为优化莲子淀粉品质特性提供理论依据。方法:以莲子淀粉为原料,采用超高压技术对淀粉进行改性处理,研究不同超高压时间对莲子淀粉颗粒粒径分布和理化性质的影响。结果:淀粉颗粒大小及分布随超高压处理时间的增加而增大;超高压处理提高了莲子淀粉在55,65,75℃的溶解度和膨胀度,降低了其在85℃和95℃的溶解度和膨胀度;超高压处理降低了莲子淀粉的透光率,随着贮藏时间的延长,透光率呈下降趋势;500MPa超高压处理10~50 min,有利于改善莲子淀粉的凝沉性和冻融稳定性;随着处理时间的增加,淀粉颗粒被破坏程度加大,导致凝沉性增大,析水率增加。结论:超高压处理可以改善莲子淀粉的理化特性。  相似文献   

3.
张乾能  吴斌  宗力 《食品科学》2009,30(9):89-94
本实验以球磨粉碎后的莲子淀粉为研究对象,研究粉碎时间、淀粉糊浓度、温度对微细化莲子淀粉糊流变特性的影响。结果表明:莲子淀粉糊为假塑性流体,球磨时间对莲子淀粉糊的表观黏度有显著影响;莲子淀粉糊的表观黏度随着浓度的增加迅速增大,剪切速率越低,这种影响就越明显,但球磨时间达到96h后,浓度对表观黏度变化影响不大;温度对莲子淀粉的流变特性影响显著,随着温度的增加,表观黏度迅速增大,但是经过长时间球磨后的莲子淀粉糊的流变特性对温度的依赖性减小。  相似文献   

4.
超高压均质技术对玉米淀粉流变特性的影响   总被引:1,自引:0,他引:1  
通过超高压均质技术对玉米淀粉进行不同压力的均质处理,使用流变仪研究了不同压力处理后玉米淀粉在不同条件下的流变学特性。结果表明,玉米淀粉的流变特性随压力的变化而变化。  相似文献   

5.
为探讨pH对莲子淀粉糊化特性的影响,研究采用快速黏度分析仪、流变仪和差示扫描量热仪,测定不同pH条件下莲子淀粉的糊化特性、流变特性和热力学特性,并进行不等温动力学分析。结果表明:莲子淀粉糊黏度随着pH的升高呈现先增大后减小的趋势,强酸性条件热稳定性较差,碱性条件下热稳定性较强。不同pH体系条件下的淀粉糊均为非牛顿流体,具有假塑性流体特征,pH不会改变淀粉糊的流体类型。通过Power law方程对其流变特性曲线进行拟合,各样本均为剪切稀化现象,所形成凝胶为弱凝胶,体系以黏性为主。在pH5时,莲子淀粉糊具有较明显的触变性。莲子淀粉的热焓值、峰值温度、终止温度、糊化温度随着pH的升高呈现出先增大后减小的趋势,在强酸条件下,淀粉发生酸化,糊化进程及回生进程变缓;由不等温动力学得出:pH5时为莲子淀粉糊化最佳酸碱度。研究结果为莲子淀粉的综合开发利用提供了一定的理论依据。  相似文献   

6.
通过布拉班德黏度仪,研究淀粉浓度、不同pH值及浓度的糖(蔗糖、海藻糖、葡萄糖、果糖、高果糖浆)、盐(NaCl、KCl)对莲子淀粉糊黏度特性的影响。试验结果表明,随着淀粉浓度的增加莲子淀粉起糊温度降低,峰值黏度显著提高,热、冷稳定性下降,凝沉性增强。酸性条件(pH3.0)对莲子淀粉糊黏度特性影响显著。随着pH值的升高,热、冷稳定性和凝沉性均得到改善。加入糖时,莲子淀粉糊黏度提高,热、冷稳定性降低,凝沉性增强,而盐对莲子淀粉糊的影响小。  相似文献   

7.
瓜尔豆胶对莲子淀粉糊特性影响的研究   总被引:3,自引:0,他引:3  
研究瓜尔豆胶对莲子淀粉糊化特性和冻融稳定性的影响.结果表明,添加瓜尔豆胶使莲子淀粉糊起糊温度降低,峰值黏度显著提高,热稳定性、冷稳定性均下降,且添加量越大影响越显著:当瓜尔豆胶添加量为0.5%时,淀粉凝沉性变化不大;瓜尔豆胶添加量为1%时,淀粉凝沉性减弱.瓜尔豆胶可大大降低莲子淀粉糊的析水率,提高莲子淀粉糊的冻融稳定性.  相似文献   

8.
湿热处理对甘薯淀粉流变特性的影响   总被引:1,自引:0,他引:1  
目的:采用HAAKE MARSⅢ型流变仪研究不同湿热处理条件下甘薯淀粉的流变性。方法:通过控制湿热处理的水分(10%~30%)、温度(90~130 ℃)和时间(4~12 h)对甘薯淀粉进行湿热改性。结果:原淀粉与湿热改性淀粉的糊具有明显的剪切稀化行为,其流变曲线也服从Herschel-Bulkley模型。不同湿热处理条件下得淀粉糊浓度系数K、屈服应力τ0均低于原淀粉(K=14.816 Pa·sn0原=10.322 Pa),流动特性指数n高于原淀粉(n=0.47)。随着湿热处理水分、温度与时间的增加,淀粉糊的K逐渐减小,τ0则先增后减,湿热处理水分20%,温度110 ℃,时间8 h的屈服应力最大(τ0上行线=5.683 Pa,τ0下行线=12.423 Pa)。动态流变学特性表明:不论湿热改性与否,甘薯淀粉糊的储能模量(G')均大于损耗模(G″)。并且相对于原淀粉,湿热改性甘薯淀粉糊的黏弹性明显增加。结论:经过湿热处理,甘薯淀粉糊的浓度系数与屈服应力下降,非牛顿性减弱,黏弹性显著提高,更适合作为食品加工的辅料和添加剂。  相似文献   

9.
微波处理对莲子淀粉理化性质的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
为探讨微波处理对莲子淀粉的改性作用,本文利用微波工作站对莲子淀粉进行加热处理,观察预处理后的淀粉颗粒形态变化、后期糊化过程中直链淀粉溶出量和流变特性,结果表明,30%的莲子淀粉乳经不同微波功率处理后,其颗粒形态未发生明显变化,仍呈现光滑的椭球状;随着微波功率的增强,颗粒间出现了明显的聚集粘结行为,颗粒的平均粒径最大值可达26.37μm,为原淀粉2.15倍,同时淀粉颗粒晶区比例增大,995/1024吸收峰比值由0.89上升至0.99;经微波处理后的莲子淀粉,其淀粉糊的直链淀粉溶出量由120mg/g下降至87.89mg/g,淀粉糊触变性、流变粘度及弹性模量也均有降低。这说明微波处理可促使莲子淀粉拥有更紧密的晶区结构,并在后期的糊化过程中,对淀粉颗粒膨胀可能起到了一定的抑制作用,造成直链淀粉溶出量减少,从而导致淀粉糊流变特性发生变化。  相似文献   

10.
测定了不同添加物对莲藕淀粉糊剪切应力和表观黏度的影响,结果表明:添加剂不改变莲藕淀粉糊的流体类型;单甘酯、蔗糖、磷酸盐使莲藕淀粉糊的剪切应力不同程度降低,表观黏度也相应降低;CMC、食盐、黄原胶使莲藕淀粉糊的剪切应力明显提高,表观黏度稍有增大。  相似文献   

11.
超高压对肌球蛋白-抗性玉米淀粉混合凝胶特性的影响   总被引:1,自引:0,他引:1  
以添加质量分数0.6%抗性玉米淀粉(resistant corn starch,RCS)的鸡胸肉肌球蛋白(myosin,M)混合(M-RCS)体系为研究对象,考察超高压(ultra high pressure,UHP)处理(100~400 MPa,10 min)对该体系凝胶保水性(water holding capacity,WHC)和硬度的影响;并通过分析M-RCS体系表面疏水性、活性巯基含量、流变特性及凝胶水分子横向弛豫时间的变化,探讨其凝胶特性的变化机制。结果表明:M-RCS凝胶的WHC随着压力的增大(100~400 MPa)而显著增加(P0.05),硬度则显著降低(P0.05);UHP通过增加M-RCS体系的疏水基团和活性巯基数量,减小其储能模量G′,改变其黏弹性tanδ,缩短凝胶内部水分子弛豫时间T22和T23,减弱体系内水分的流动性,进而改变了凝胶的WHC和硬度。实验结果可为低脂、高膳食纤维肉制品的开发提供理论依据。  相似文献   

12.
3%、5%和9%(w/v)的脱脂马铃薯淀粉悬浮液在700MPa压力下处理5min,5%(w/v)的脱脂马铃薯淀粉悬浮液分别在600、650、700、750MPa压力下处理5min,随后采用偏光显微镜和X-射线衍射仪研究淀粉结晶结构的变化。结果表明:700MPa压力下,淀粉浓度越低,其偏光十字消失越明显,结晶度降低越多;淀粉乳浓度为5%(w/v)时,随着压力的增大,其偏光十字逐渐消失,淀粉的特征衍射峰逐渐变弱至消失,结晶程度降低,当压力达到750MPa时,其结晶区域完全消失,淀粉最终由多晶态转变为非晶态。  相似文献   

13.
碱溶酸沉法得到的类苍白松软渗水(pale, soft and exudative,PSE)鸡肉分离蛋白功能特性较差,研究不同超声功率(0、150、300、450 W)对类PSE鸡肉分离蛋白(以下简称类PSE分离蛋白)结构和乳化特性的影响及其相关性。结果表明:随着超声功率的增加,类PSE分离蛋白的粒径和ζ电位绝对值显著降低(P<0.05),粒径分布逐渐从双峰分布转变为单峰分布;十二烷基硫酸钠-聚丙烯酰胺凝胶电泳显示蛋白组成成分没有发生明显变化,而肌球蛋白重链和肌动蛋白的条带强度总体上增强;圆二色谱显示α-螺旋和无规卷曲相对含量增加,β-折叠和β-转角相对含量降低;自由巯基含量、表面疏水性和荧光强度明显增加;通过扫描电子显微镜进一步证实超声处理改变了分离蛋白的结构,并且减小分离蛋白尺寸;超声处理后,类PSE分离蛋白溶解性、乳化活性和乳化稳定性显著提高(P<0.05);同时,相关性分析和主成分分析结果表明,超声处理后类PSE分离蛋白乳化特性的提高与其结构的改变存在高度相关性。综上,超声处理能够改变类PSE分离蛋白的结构并提高其乳化特性,为类PSE鸡肉深加工提供一定的参考依据。  相似文献   

14.
陶锦鸿  郑铁松  胡月珍 《食品科学》2009,30(21):109-112
研究不同淀粉乳浓度、pH 值、NaCl 浓度、糖的种类以及吐温-80 浓度对莲子淀粉凝胶力学性能的影响。结果表明:随着淀粉乳浓度的增加,淀粉凝胶强度和弹性模量呈线性关系增加,而凝胶弹性增加不明显;随着NaCl 添加量的增加,淀粉凝胶强度和弹性模量呈先增大后减小的趋势,凝胶弹性则呈减小的趋势;在pH4.0~7.2范围内,淀粉3 种凝胶力学性能变化趋势与不同NaCl 浓度下的变化相反;3 种糖类物质均可提高莲子淀粉的凝胶强度,其大小顺序依次为果糖>葡萄糖>蔗糖,同时也可提高莲子淀粉的凝胶弹性和弹性模量,但影响程度不大;当吐温-80 加入量小于0.5% 时,淀粉凝胶强度和弹性模量迅速减小,凝胶弹性略有增加,当吐温-80 加入量大于0.5% 时,淀粉凝胶力学性能基本不变。  相似文献   

15.
超高压处理对玉米淀粉结构及糊化特性的影响   总被引:1,自引:0,他引:1  
利用光学显微、X-射线衍射、差示扫描量热、快速黏度分析技术研究了超高压处理对玉米淀粉结构及糊化性质的影响。结果显示,超高压处理能使玉米淀粉糊化,处理压力为500 MPa及600 MPa时完全糊化所需保压时间分别为15 min和5 min,但400 MPa超高压处理30 min也不会使淀粉糊化。超高压糊化过程中,淀粉颗粒结构逐渐破坏膨胀,结晶结构由A型向V型转化,RVA黏度曲线峰值黏度逐渐消失。适宜条件的超高压处理对淀粉颗粒同时具有韧化和晶体破坏作用。其中,400 MPa超高压处理5~10 min时,淀粉颗粒内部韧化作用占优,因而表现为相对结晶度、糊化温度(T_o,T_p)及糊化焓增加,而RVA曲线峰值黏度降低。  相似文献   

16.
孟爽  杨绮云  晏祖根 《现代食品科技》2013,29(12):2975-2979
乙酰化淀粉是一种重要的改性淀粉,广泛应用于食品及非食品加工等领域。本文以玉米淀粉为原料,乙酸酐为乙酰化试剂,利用超高压处理技术,在压力为300~400 MPa条件下,保压10~20 min以制备乙酰化淀粉。利用传统方法(30 ℃,0.1 MPa,60 min)制备的乙酰化淀粉作为对照样品,探讨超高压技术对乙酰化淀粉的取代度、热特性、溶解性、膨润力、凝沉性和糊的透明度等理化特性的影响,并利用红外光谱对乙酰化淀粉的结构进行了表征。研究表明超高压方法可缩短反应时间,提高乙酰化淀粉取代度,压力为400 MPa,保压20 min时取代度为0.0461,与传统方法相比,取代度提高约30%,超高压处理时间越长取代度越高。超高压方法工艺简单,反应时间短,节约能源,制备的乙酰化淀粉具有更好的抗凝沉性。  相似文献   

17.
超高压处理对槟榔芋淀粉理化性质的影响   总被引:1,自引:0,他引:1  
以槟榔芋淀粉为原料,采用超高压技术对淀粉进行改性处理,研究不同压力处理对其理化性质的影响.结果表明:随着压力的增大,槟榔芋淀粉的溶解度、膨胀度呈先减小后增大的趋势,但是均显著低于原淀粉;超高压处理可以显著增大槟榔芋淀粉的透光率;经200 MPa压力处理后,其冻融稳定性有明显改善.经300 MPa压力处理后,槟榔芋淀粉凝胶的硬度、咀嚼性和胶黏性都显著增加,但弹性和凝聚性变化不显著.RVA测定结果表明:淀粉糊的峰值黏度随处理压力的增大而显著增大;改性后槟榔芋淀粉的崩解值略高于原淀粉,而回生值变化不显著;200 MPa压力处理可降低槟榔芋淀粉的糊化温度.研究表明,一定程度的高压处理可以达到改善槟榔芋淀粉理化性质的目的.  相似文献   

18.
超高压对鹰嘴豆分离蛋白功能性质的影响   总被引:9,自引:0,他引:9  
研究了超高压(100-600 MPa)对鹰嘴豆分离蛋白功能性质的影响。结果表明:随着压力的增大和处理时间的延长,鹰嘴豆分离蛋白(CPI)的溶解性不同程度的下降,而表面疏水性、乳化性和起泡性都显著提高。当压力大于400 MPa(乳化性)、500 MPa(起泡性、表面疏水性),或者处理时间大于10 min时,反而导致功能性质的下降。  相似文献   

19.
小麦淀粉流变学特性分析   总被引:4,自引:0,他引:4  
研究小麦淀粉流变学特性,对小麦淀粉溶液糊化过程中粘度与剪切速率、温度和浓度关系进行分析,结果显示糊化后小麦淀粉糊为典型假塑性流体,对小麦淀粉糊流变学分析表明,其流变模型用幂函数表示有很高拟合度,以Y表示粘度,X表示剪切速率,浓度8%,90℃时,本实验小麦淀粉模型为y=1319.5x-0.4144,R2=0.9735。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号