首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Wang H  Qu J 《Water research》2003,37(15):3767-3775
A combined bioelectrochemical and sulfur autotrophic denitrification process for drinking water treatment was put forward and investigated extensively in this paper. In this new process, the bioelectrochemical denitrification was carried out in the upper part of the reactor while sulfur denitrification in the lower part. The H+ produced in Sulfur Part could be consumed by hydrogen denitrification in Bioelectrochemical Part. Therefore, the limestone for pH adjustment in Sulfur Part was not necessary in this combined process, which avoided the problem of hardness increase. The sulfate accumulation in this combined reactor was less than that of the sulfur limestone autotrophic denitrification system. The effluent from two parts was kept neutral at optimum operation conditions. When the influent nitrate was 30 mg-N/L, the reactor could be operated efficiently at the hydraulic retention time ranged from 1.9 to 5h (corresponding minimum current was 16-3 mA), i.e. the effluent NO3(-)-N removal ranged from 90% to 100% without nitrite accumulation and the effluent sulfate concentration was lower than 170 mg/L. The maximum volume-loading rate of the reactor was 0.381 kg NO3(-)-N/(m3d). The biomass and scanning electron microscope micrographs of Sulfur Part were also analyzed.  相似文献   

2.
Rabah FK  Dahab MF 《Water research》2004,38(17):3719-3728
Two laboratory-scale high performance fluidized bed biofilm reactors (FBBR) with sand as the biofilm carrier were used to investigate the denitrification of high-strength nitrate wastewater with specific emphasis on the effect the nitrogen loading rate and the superficial velocity (V(s)). The results demonstrated that the FBBR system is capable of efficiently handling an exceptionally high nitrate nitrogen concentration of 1000 mg N/L. At a loading rate of 6.3 kg-N/m(3)(bed).d almost complete denitrification was achieved with a removal efficiency of 99.8% and an effluent concentration of 2mg N/L at V(s) values of 45, 55 and 65 m/h. The maximum efficient loading rate (R(max)) at which the US drinking water nitrate-nitrogen standard concentration of 10mg N/L would be exceeded was found to be a function of the applied V(s). The R(max) was found to be 12 kg-N/m(3)(bed).d at a V(s) value of 45 m/h. As V(s) was increased to 55 and 65 m/h, the optimum R(max) dropped to 9.5 and 8 kg-N/m(3)(bed).d, respectively. Higher denitrification rates were achieved at relatively lower V(s). However, there is a minimum practical velocity below which agglomeration of biomass would occur. The suspended solids concentration in the effluent was below 30 mg/L throughout the study.  相似文献   

3.
A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca2+. Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO3-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO3-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO2-N reduction rate was around three times lower than the reduction rate of NO3-N, which led to NO2-N accumulation at high loadings.  相似文献   

4.
Kinetic model of autotrophic denitrification in sulphur packed-bed reactors   总被引:7,自引:0,他引:7  
Koenig A  Liu LH 《Water research》2001,35(8):1969-1978
Autotrophic denitrification of synthetic wastewater by Thiobacillus denitrificans in upflow sulphur packed-bed reactors was studied in order to establish the process kinetics for prediction of effluent concentration. Elemental sulphur particles of different size served as energy substrate as well as the physical support for the microbial biofilm. Experiments were performed under operating conditions of (i) different flow rates at constant influent nitrate concentration; and (ii) different influent nitrate concentrations at constant flow rate. The experimental results show that autotrophic denitrification rates in upflow sulphur packed-bed reactors can be described by a half-order kinetic model for biofilms. It was found that the half-order kinetic constants of upflow packed-bed reactors are 2.94-3.60, 1.47-2.04, and 1.12-1.29 mg1/2/L1/2 h for sulphur particle sizes of 2.8-5.6, 5.6-11.2, and 11.2-16 mm, respectively. The half-order kinetic constants could be related to the specific surface area of the reactor media by a simple equation. Successful application of the half-order reaction rate model was demonstrated for an actual wastewater (nitrified leachate). A comparison with the literature showed that the half-order reaction rate constants for autotrophic denitrification using elemental sulphur are approximately one order of magnitude lower than those of heterotrophic denitrification. An improved stoichiometric equation for autotrophic denitrification using elemental sulphur as electronic donor is also proposed.  相似文献   

5.
为考察联氨作为自养脱氮系统菌群调节剂的可行性,以实验室内运行的HABRCANON反应器为试验装置,研究不同浓度联氨对自养脱氮系统脱氮效能和功能微生物的影响。结果表明,低浓度(1~4 mg/L)联氨可以抑制亚硝酸盐氧化菌(NOB)的活性,促进厌氧氨氧化菌(AnAOB)的活性,从而提高脱氮效能;高浓度(10 mg/L)联氨对好氧氨氧化菌(AOB)和NOB的抑制作用明显;停止投加联氨后,CANON系统的脱氮效能可迅速恢复;高浓度(10 mg/L)联氨对HABR全程自养脱氮工艺的影响是可逆的,但对NOB的抑制不可逆。对生物膜样品中的优势菌种进行分析发现,AOB和AnAOB为主要的功能微生物。采用低-高-低的联氨投加方式,可以有效抑制自养脱氮反应器内NOB的生长,保证自养脱氮系统的稳定运行。  相似文献   

6.
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrification and subsequent autotrophic denitrification were carried out in MBfR with pure oxygen and hydrogen supply, respectively, in order to remove nitrogen without the use of heterotrophic bacteria. Excessive biomass accumulation is typically the major cause of system failure of MBfR. No biomass accumulation was detected in the nitrification reactor as low-level discharge of solids from the system balanced out biomass generation. The average specific nitrification rate during 250 days of operation was 1.88 g N/m2 d. The subsequent denitrification reactor, however, experienced decline of performance due to excessive biofilm growth, which prompted the implementation of periodic nitrogen sparging for biofilm control. The average specific denitrification rate increased from 1.50 g N/m2 d to 1.92 g N/m2 d with nitrogen sparging, over 190 days thus demonstrating the feasibility of stable long-term operation. Effluent suspended solids increased immediately following sparging: from an average of 2.5 mg/L to 12.7 mg/L. This periodic solids loss was found unavoidable, considering the theoretical biomass generation rates at the loadings used. A solids mass balance between the accumulating and scoured biomass was established based on the analysis of the effluent volatile solids data. Biofilm thickness was maintained at an average of 270 μm by the gas sparging biofilm control. It was concluded that biomass accumulation and scouring can be balanced in autotrophic denitrification and that long-term stable operation can be maintained.  相似文献   

7.
An alternative flowchart for the biological removal of hydrogen sulfide from oil-refining wastewater is presented; autotrophic denitrification in a multi-stage treatment plant was utilized. A pilot-scale plant was fed with a mixture of the following constituents: (a) original wastewater from an oil refining industry (b), the effluent of the existing nitrification-stage treatment plant and (c) sulfide in the form of Na2S. Anoxic sulfide to sulfate oxidation, with nitrate as a terminal electron acceptor, proved very successful, as incoming concentrations of 110 mg S2-/L were totally converted to SO(4)2-. At complete denitrification, the concentration of S2- in the reactor effluent was less than 0.1mg/L. Fluctuating S2- concentration in the feed could be tolerated without any problems, as the accumulated sulfide in the effluent of the denitrification stage is oxidized aerobically in a subsequent activated-sludge treatment stage. This alternative new treatment scheme was further introduced at the refinery's wastewater processing plant. Thus, complete H2S removal is now accomplished by the combination of the proposed biological method and the existing stripping with CO2. As a result, stripping, and thus its cost, is reduced by 70%.  相似文献   

8.
Haugen KS  Semmens MJ  Novak PJ 《Water research》2002,36(14):3497-3506
A novel in situ membrane technology was developed to remove nitrate (NO3-) from groundwater. Membrane-fed hydrogen gas (H2) was used as an electron donor to stimulate denitrification. A flow-through reactor fit with six hollow-fiber membranes (surface area = 93 cm2) was designed to simulate groundwater flowing through an aquifer with a velocity of 0.3 m/day. This membrane technology supported excellent NO3- and nitrite (NO2-) removal once H2 and carbon limitations were corrected. The membrane module achieved a maximum H2 flux of 1.79 x 10(-2) mg H2/m2 s, which was sufficient to completely remove 16.4 mg/L NO3(-)-N from a synthetic groundwater with no NO2- accumulation. In addition, this model in situ treatment process produced a high quality water containing <0.5 mg/L total organic carbon.  相似文献   

9.
Hydrogen-dependent denitrification has gained significant attention due to its potential economic advantage over heterotrophic denitrification. However, effective hydrogen delivery and biomass retention under anaerobic conditions are significant challenges to implementation of this process. An innovative hydrogenotrophic denitrification system, that addresses these challenges, consisting of an anaerobic submerged membrane bioreactor (MBR) and a novel hydrogen delivery unit, was evaluated for removal of nitrate from a synthetic groundwater feed. The hydrogen delivery unit was designed to release hydrogen-supersaturated water to the reactor and was efficient in hydrogen delivery, providing complete mass transfer. The anaerobic submerged MBR was successful in both reducing nitrate from 25 mg NO(3)-Nl(-1) to below detection and separating biomass from treated water to produce effluent free of suspended solids. Nitrogen gas produced during denitrification was internally recycled to effectively achieve membrane scouring and reactor mixing. The total organic carbon was similar to that of the incoming feed water, averaging approximately 6 mgl(-1).  相似文献   

10.
This paper reports on a lab-scale evaluation of a novel and integrated biological nitrogen removal process: the sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process that was recently proposed for saline sewage treatment. The process consisted of an up-flow anaerobic sludge bed (UASB) for sulfate reduction, an anoxic filter for autotrophic denitrification and an aerobic filter for nitrification. The experiments were conducted to evaluate the performance of the lab-scale SANI system with synthetic saline wastewater at various hydraulic retention times, nitrate concentrations, dissolved oxygen levels and recirculation ratios for over 500 days. The system successfully demonstrated 95% chemical oxygen demand (COD) and 74% nitrogen removal efficiency without excess sludge withdrawal throughout the 500 days of operation. The organic removal efficiency was dependent on the hydraulic retention time, up-flow velocity, and mixing conditions in the UASB. Maintaining a sufficient mixing condition in the UASB is important for achieving effective sulfate reduction. For a typical Hong Kong wastewater composition 80% of COD can be removed through sulfate reduction. A minimum sulfide sulfur to nitrate nitrogen ratio of 1.6 in the influent of the anoxic filter is necessary for achieving over 90% nitrate removal through autotrophic denitrifiers which forms the major contribution to the total nitrogen removal in the SANI system. Sulfur balance analyses confirmed that accumulation of elementary sulfur and loss of hydrogen sulfide in the system were negligible.  相似文献   

11.
Enhanced in situ denitrification for a municipal well   总被引:1,自引:0,他引:1  
Khan IA  Spalding RF 《Water research》2004,38(14-15):3382-3388
In 37% of small community systems in Nebraska at least one sample exceeded the drinking water standard for nitrate of 10 mg N L(-1) during the period from 1982 to 1998 (US Bureau of Reclamation, US Department of the Interior, 1999). In this experiment a daisy well system was designed to promote denitrification in the radial capture zone of a municipal well with nitrate-N levels> 10mg L(-1), and thereby bring the nitrate concentration into compliance. The remediation design consisted of eight 15 cm diameter outer perimeter reduction wells and eight 5 cm diameter inner perimeter oxidation wells which are located roughly 18 and 9 m, respectively, from the municipal well, which serves as the extraction well. Endemic microbes are stimulated by pulsing separate injections of acetate-C and nitrate contaminated water (C:N = 1.2) to enhance denitrification in the capture zone. Water was extracted from the municipal well at 6.6 L s(-1) (liters per second). A 45% nitrate reduction occurred in municipal well samples when the total acetate-C input was increased by lengthening the acetate pulse from 1.0 to 1.5 h (C:N=1.8). Nitrate concentration stabilized at about 6.3 mg NO3-N L(-1) for two weeks during alternating acetate pulse lengths. The in situ denitrification process was sustained for three months without evidence of clogging. Results from this experiment indicated that the extracted water was in compliance with respect to nitrate, nitrite, trihalomethanes, turbidity, and total and fecal coliforms; however, the total plate count exceeded the maximum permissible limit (500 cfu/mL).  相似文献   

12.
A membrane bioreactor and reverse osmosis (MBR-RO) system was developed to assess potential reuse applications of municipal wastewater. The objective of the study was to examine the water quality throughout the system with a focus on waterborne pathogens, disinfection by-products (DBPs) and nitrate. This paper will discuss the presence of these contaminants in MBR effluent and focus on their subsequent removal by RO. This study has shown that high quality reuse water can be produced from municipal wastewater through the use of an MBR-RO system. The water meets California Title 22 reuse regulations for non-potable applications and US EPA drinking water limits for trihalomethanes (THM) (80 microg/L), haloacetic acids (HAA) (60 microg/L), chlorite (1.0 mg/L), total coliform (not detectable), viruses (not detectable), and nitrate/nitrite (10 mg N/L). However, THM formation (182-689 microg/L) attributed to cleaning of the MBR with chlorine and incomplete removal by subsequent RO treatment resulted in reuse water with THM levels (40.2+/-19.9 microg/L) high enough to present a potential concern when considering drinking water applications. Nitrate levels of up to 3.6 mg N/L, which resulted from incomplete removal by the RO membrane, are also a potential concern. A denitrification step in the MBR should be considered in potable water applications.  相似文献   

13.
Simultaneous nitrification and denitrification in one reactor has been realized with different methods in the past. The usage of biodegradable biocompounds as biofilm carriers is new. The biocompounds were designed out of two polymers having different degradability. Together with suspended autotrophic biomass the biocompound particles were fluidized in an airlift reactor. Process water from sludge dewatering with a mean ammonium nitrogen concentration of 1150 mg L−1 was treated in a two stage system which achieved a nitrogen removal of 75%. Batch experiments clearly indicate that nitrification can be localized in the suspended biomass and denitrification in the pore structure of the slowly degraded biocompounds. Images taken with CLSM prove the concept of the pore structure within the biocompounds, which provide both a heterotrophic biofilm and carbon source.  相似文献   

14.
将硫自养反硝化工艺与潜流人工湿地相结合,考察了其对低碳氮比污水中氮的去除效果。结果表明,增加曝气装置后硫自养波形潜流人工湿地的脱氮效果可以得到保障,在气水比为8∶1、水力负荷为0.8 m3/(m2·d)时,TN去除率为(70±5)%,出水TN浓度低于8 mg/L;NH4+-N去除率在90%以上,出水NH4+-N浓度低于3 mg/L;COD去除率为(50±2)%,出水COD浓度低于40 mg/L;p H值可维持在7~9。同时,石灰石填料具有同步除磷的效果。该工艺具有脱氮效率高、效果好、运行费用低的特点。  相似文献   

15.
Denitrification walls are a useful approach for removing nitrate from shallow groundwater, but little is known about the sustainability of nitrate removal, which is dependent on the continued supply of organic carbon to denitrifying bacteria. To address this question, we monitored nitrate removal, denitrification and carbon dynamics in a pilot-scale denitrification wall for 5 yr. The wall continuously removed more than 95% of the incoming nitrate in groundwater, which ranged from 5 to 15 mg N L(-1). We did not detect decreases in total carbon during the 5-yr study. Available carbon declined for the first 200 days after the wall was constructed but has since remained relatively constant. While microbial biomass has varied between 350 and 550 microg C g(-1) there was no downward trend, suggesting that carbon availability was not limiting the size of the microbial population. However, there was a large decrease in denitrifying population, as indicated by declines in denitrifying enzyme activity. Despite this decrease, denitrification rates have remained high enough to remove nitrate from groundwater and denitrification was limited by nitrate rather than by carbon. Our data demonstrates that there was sufficient available carbon in this denitrification wall to support denitrification and nitrate removal for at least 5 yr.  相似文献   

16.
溶解氧浓度对A~2/O工艺运行的影响   总被引:2,自引:0,他引:2  
以城市污水厂中最常采用的A2/O工艺为研究对象,开展了处理实际生活污水的研究,系统探讨了DO浓度对该工艺运行的影响。结果表明,当好氧区的DO平均浓度从4.0 mg/L降低至1.0 mg/L时,对COD的去除基本不受影响;而系统的硝化效果逐渐降低,但是低DO浓度引发的SND等作用,使得对TN的去除率反而逐渐升高。单纯从生物脱氮的角度考虑,A2/O工艺可以在DO为1.0~2.0 mg/L之间运行。不过低DO浓度运行对生物除磷效果的影响很大,在DO为1.0 mg/L时,除磷效率逐渐下降,这是由于供氧不足引发了生物除磷性能的恶性循环。另外,低DO浓度运行还引发系统中的污泥发生了微膨胀现象,在污泥微膨胀期间出水SS<5 mg/L。就总体的运行情况而言,不同于A/O等单纯脱氮工艺,A2/O工艺不宜在DO<2.0 mg/L的条件下运行,否则需要引入化学除磷。  相似文献   

17.
Drinking water denitrification by a membrane bio-reactor   总被引:8,自引:0,他引:8  
Drinking water denitrification performance of a bench scale membrane bio-reactor (MBR) was investigated as function of hydraulic and biological parameters. The reactor was a stirred tank and operated both in batch and continuous mode. The mixed denitrifying culture used in the batch mode tests was derived from the mixed liquor of a wastewater treatment plant in Erzincan province in Turkey. But the culture used in the continuous mode tests was that obtained from the batch mode tests at the end of the denitrification process. The nitrate contaminated water treated was separated from the mixed liquor suspended solids (MLSS) containing active mixed denitrifying culture and other organic substances by a membrane of 0.2 microm average pore diameter. The results indicated that the use of a membrane module eliminated the need for additional post treatment processes for the removal of MLSS from the product water. Concentration of nitrite and that of MLSS in the membrane effluent was below the detectable limits. Optimum carbon to nitrogen (C/N) ratio was found to be 2.2 in batch mode tests. Depending on the process conditions, it was possible to obtain denitrification capacities based on the reactor effluent and membrane effluent up to 0.18kgm(-3)day(-1) and 2.44 kg m(-2) day2(-1) NO(3-)-N, respectively. The variation of the removal capacity with reactor dilution rate and membrane permeate flux was the same for two different degrees of [MLSS]0/[NO3-N]0 (mass) ratios of 25.15 and 49.33. The present MBR was able to produce a drinking water with NO(3-)-N concentration of less than 4 ppm from a water with NO3-N contamination level of 367 ppm equivalent to a NO(3-)-N load of 0.310 kgm(-3) day(-1). The results showed that MBR system used was able to offer NO(3-)-N removals of up to 98.5%. It was found that the membrane limiting permeate flux increased with increasing MLSS concentration.  相似文献   

18.
Refinery wastewaters may contain aromatic compounds and high concentrations of sulfide and ammonium which must be removed before discharging into water bodies. In this work, biological denitrification was used to eliminate carbon, nitrogen and sulfur in an anaerobic continuous stirred tank reactor of 1.3 L and a hydraulic retention time of 2 d. Acetate and nitrate at a C/N ratio of 1.45 were fed at loading rates of 0.29 kg C/m3 d and 0.2 kg N/m3 d, respectively. Under steady-state denitrifying conditions, the carbon and nitrogen removal efficiencies were higher than 90%. Also, under these conditions, sulfide (S(2-)) was fed to the reactor at several sulfide loading rates (0.042-0.294 kg S(2-)/m3 d). The high nitrate removal efficiency of the denitrification process was maintained along the whole process, whereas the carbon removal was 65% even at sulfide loading rates of 0.294 kg S(2-)/m3 d. The sulfide removal increased up to approximately 99% via partial oxidation to insoluble elemental sulfur (S0) that accumulated inside the reactor. These results indicated that denitrification is a feasible process for the simultaneous removal of nitrogen, carbon and sulfur from effluents of the petroleum industry.  相似文献   

19.
Recently we developed a process for wastewater treatment in places where part of the fresh water usage is replaced by seawater usage. The treatment of this saline sewage consists of sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process. The process consists of an up-flow anaerobic sludge bed (UASB) for sulfate reduction, an anoxic filter for autotrophic denitrification using dissolved sulfide produced in the UASB and an aerobic filter for nitrification. The system was operated for 500 days with 97% COD removal and 74% total nitrogen removal without withdrawal of sludge. To verify these results and to understand this novel process, a steady-state model was developed from the COD, nitrogen and sulfur mass and charge balances based on the stoichiometries of the sulfate reduction, the autotrophic denitrification and the autotrophic nitrification. The model predictions agreed well with measured data on COD, nitrate and sulfate removal, sulfide production, effluent TSS, and mass balances of COD, sulfur and nitrogen in the three reactors. The model explains why withdrawal of sludge from the SANI system is not needed through comparisons of the predictions and measurements of effluent TSS and phosphorus concentrations.  相似文献   

20.
进水N/S值对同步脱硫反硝化特性的影响   总被引:2,自引:2,他引:0  
研究了不同进水N/S值条件下,不同接种物的厌氧体系的同步脱硫反硝化特性。结果表明:在N/S为0.6或0.4的条件下,3个体系对硫化物的去除率均达到90%以上,其中以进水N/S为0.4时产生的悬浮态硫最多;硝态氮的去除特性与硫化物不同,3个体系对硝态氮的去除率均在进水N/S为1.0时达到100%,且此时N2的产量也最大。可见,尽管同步脱硫反硝化工艺具备同时脱氮及除硫的能力,但其进水N/S的控制值却不相同。对于脱硫而言,最佳的进水N/S为0.4;对于脱氮而言,最佳的进水N/S为1.0。此外,研究发现3个不同接种物的厌氧体系对硫化物及硝态氮的去除途径不同,进水N/S值的影响也有差异。对于接种了厌氧污泥的体系,存在自养反硝化和异养反硝化的竞争,改变进水N/S值可调节二者的竞争,高N/S值会抑制硫化物自养反硝化过程,降低对硫化物的去除率;对于接种脱氮硫杆菌的纯菌体系,多硫自催化反应会与硫化物自养反硝化反应竞争硫化物,降低对硝态氮的去除率,高N/S值会导致出水硝态氮浓度较高;对于添加脱氮硫杆菌的强化厌氧污泥体系,以硫化物自养反硝化过程为主,最佳的N/S为0.4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号