首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
This paper deals with the design, modeling, analysis and implementation of unity power factor (UPF) based electronic ballast for a fluorescent lamp (FL). The proposed electronic ballast uses a boost AC–DC converter as a power factor corrector (PFC) to improve the power quality at the input ac mains. In this single-stage UPF based electronic ballast, boost PFC converter and a half bridge series resonant inverter (HBSRI) share a common power switch. Thus one power switch is reduced as compared to the conventional two-stage approach. The design, modeling, analysis and implementation of this topology were carried out in MATLAB-Simulink environment for a T8 36 W, 220 V, 50 Hz fluorescent lamp. The switching frequency was kept more than the resonant frequency of the inverter, to ensure the zero voltage switching (ZVS) operation of both power switches. This resulted in reduction of high frequency switching losses. The power quality parameters such as displacement power factor (DPF), distortion factor (DF), power factor (PF), crest factor (CF) and total harmonic distortion of ac mains current (THDi) were evaluated to analyze the performance of proposed electronic ballast. Test results on a developed prototype of PFC electronic ballast were included to validate the design and simulated results.  相似文献   

2.
An active snubber dc/dc converter to achieve zero voltage switching (ZVS) on power switch is presented. In the proposed converter, the primary windings of two transformers are connected in series so that the primary currents of the two transformers are equal. The secondary sides of the isolated zeta converters are connected in the parallel to share the load current and reduce the current stresses on the secondary windings of the two transformers. A boost type of active snubber is connected in parallel with the main switch to recycle the energy stored in transformer leakage and magnetizing inductors and to limit voltage stress of the main switch. During the transition interval between the active switch and the auxiliary switch, the resonance based on the resonant inductor and the output capacitor of the power switch will allow the switch to turn on at ZVS. The principle of operation, steady-state analysis and design consideration of the proposed converter are provided. Finally, experimental results for a 360 W (12 V/30 A) prototype circuit with 150 kHz switching frequency were given to demonstrate the circuit performance and verify the feasibility of the proposed converter.  相似文献   

3.
P Sharath Kumar 《Sadhana》2017,42(8):1309-1316
Multiple-load induction cooking applications are suitable used when multi-output inverters or multi-inverters are needed for multiple-load operation. Some common approaches and modifications are needed in inverter configuration for multiple-load application. This paper presents an inverter configuration with two loads by using pulse density modulation control technique. It allows the output power control of each load independently with constant switching frequency and constant duty ratio. The pulse density modulation control technique is obtained using phase on–off control between two legs of the inverter to reduce acoustic noise. The two-load three-leg inverter configuration provides reduction of the component count for extension of multiple loads. The control technique provides a wide range of output power control. In addition, it can achieve efficient and stable zero voltage switching operation in the whole load range. The proposed control scheme is simulated and experimentally verified with two-load inverter configuration.  相似文献   

4.
This paper suggests a combined novel control strategy for DFIG based wind power systems (WPS) under both nonlinear and unbalanced load conditions. The combined control approach is designed by coordinating the machine side converter (MSC) and the load side converter (LSC) control approaches. The proposed MSC control approach is designed by using a model predictive control (MPC) approach to generate appropriate real and reactive power. The MSC controller selects an appropriate rotor voltage vector by using a minimized optimization cost function for the converter operation. It shows its superiority by eliminating the requirement of transformation, switching table, and the PWM techniques. The proposed MSC reduces the cost, complexity, and computational burden of the WPS. On the other hand, the LSC control approach is designed by using a mathematical morphological technique (MMT) for appropriate DC component extraction. Due to the appropriate DC-component extraction, the WPS can compensate the harmonics during both steady and dynamic states. Further, the LSC controller also provides active power filter operation even under the shutdown of WPS condition. To verify the applicability of coordinated control operation, the WPS-based microgrid system is tested under various test conditions. The proposed WPS is designed by using a MATLAB/Simulink software.  相似文献   

5.
A soft-switching converter with parallel-connected full-wave rectifiers is presented. In the proposed converter, the primary windings of two transformers are connected in series. Two full-wave rectifiers with ripple current cancellation are connected in parallel at the output side to reduce the current stress of the secondary winding of the transformer. The clamp circuit, based on an auxiliary switch and a clamp capacitor, is connected in parallel with the primary side of the transformer to recycle the energy stored in the leakage inductance. The leakage inductance of transformers, the magnetising inductance and the clamp capacitance are resonant to achieve zero-voltage switching (ZVS) of the auxiliary switch. The resonance between the leakage inductance of the transformer and the output capacitance of the switch will achieve ZVS operation for the main switch in the proposed converter. The pulse-width modulation technique is adopted to regulate the output voltage. The operation principle and system analysis of the proposed converter are provided. Some experimental results for a 200 W (5V/40 A) prototype are given to demonstrate the effectiveness of the proposed converter.  相似文献   

6.
A brief study on a commutation strategy for a current source inverter (CSI)-fed parallel resonant circuit, using switches formed by IGBTs with series diodes, is presented in this paper. The dynamic behaviour of the inverter and different strategies for its reliable operation are discussed here considering parasitic inductance and overlap time between CSI switching devices. The dynamic behaviour of the switches decides the upper frequency limit for the application. IGBTs with the series diodes behave as uni-directional current switches with bi-directional voltage blocking capability. This feature should be taken into account to decide on an appropriate switching strategy for this converter configuration.  相似文献   

7.
An electronic ballast for multiple tubular fluorescent lamp systems is presented. The proposed structure has a high value for the power factor, a dimming capability, and soft switching of the semiconductor devices operated at high frequencies. A zero-current switching pulse width modulated SEPIC converter is used as the rectifying stage and it is controlled using the instantaneous average input current technique. The inverting stage consists of classical resonant half-bridge converter with series-resonant parallel-loaded filters. The dimming control technique is based on varying the switching frequency and monitoring the phase shift of the current drained by the filters and lamps in order to establish a closed loop control. Experimental results are presented that validate the theoretical analysis.  相似文献   

8.
Induction heating (IH) converters operate just above resonant frequency, at near unity power factor (UPF), to supply power to the targeted work-piece. Some power electronic converter-fed IH systems use power control strategies based on dynamic tracking of the changing resonant frequency as the work-piece gets heated up (since inductance changes). Therefore, the correct in-process determination of the resonant frequency is essential. A method of dynamically detecting the resonant frequency is by calculating the phase-shift between current and voltage continuously during the process. In case of CSI- (and VSI-) fed IH, the phase-shift between voltage and current is zero at resonant frequency. Hence one way of identifying the resonant frequency is by varying the frequency until the phase-shift is zero. For controlling this phase-shift between current and voltage waveforms, most of the controllers use a phase-locked loop (PLL) IC. In this paper, a novel method for the dynamic tracking of resonant frequency is proposed and the practical implementation of the same, using a field-programmable gate array (FPGA) based digital-PLL, is presented. The scheme is first simulated with generated off-line signal samples and then implemented on a real-time model of a CSI-fed IH application. Finally, the digital-PLL logic is implemented on controller hardware and practically tested in a laboratory-made experimental set-up of 2 kW at a nominal frequency of 10 kHz. The switching frequency is auto-synchronising. This fact is practically verified both by varying (i) the geometric dimensions as also (ii) the initial temperature of the work-piece. It is practically observed in the oscillograms that the phase gets locked in few cycles (and hence ensures quick tracking of the dynamically changing resonant frequency for this set-up).  相似文献   

9.
A novel simple control technique for on-chip all-digital three-phase alternating current to direct current (AC/DC) power-metal oxide semiconductor field-effect transistors (MOSFET) converter with least components, which is employed to obtain small current and DC output voltage ripples as well as excellent performance, and using a feedforward simple control method for DC output voltage regulation is proposed. The proposed all-digital feedforward controller has the features of low cost, simple control, fast response, independence of load parameters and the switching frequency, it has no need for compensation, and high stability characteristics; moreover, the proposed controller consists of three operation amplifiers and few digital logic gates that are directly applied to the three-phase converter. The power-MOSFETs are also known as power switches, whose control signals are derived from the proposed all-digital feedforward controller. Instead of thyristors or diodes, the application of power-MOSFETs can reduce the loss of AC/DC converter that is proper to the power supply system. The input stage of an AC/DC converter functions as a rectifier and the output stage is a low pass inductor capacitor (LC) filter. The input AC sources may originate from miniature three-phase AC generator or low-power three-phase DC/AC inverter. The maximum output loading current is 0.8 A and the maximum DC output ripple is less than 200 mV. The prototype of the proposed AC/DC converter has been fabricated with Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 mum 2P4M complementary MOS (CMOS) processes. The total chip area is 2.333 1.960 mm2. The proposed AC/DC converter is suitable for the following three power systems with the low power, DC/DC converter, low-dropout linear regulator and switch capacitor. Finally, the theoretical analysis is verified to be correct by simulations and experiments.  相似文献   

10.
This article presents a power supply using an LCC resonant converter having power factor correction with burst mode operation. In order to improve the performance from no load to full load, a microcontroller with an active control has been introduced. The light load efficiency is increased using burst mode operation. The proposed controller provides zero voltage switching. Mathematical analysis is done, and steady state characteristics are drawn. A simple design example is given based on the equations. The proposed converter has good efficiency with good power factor at all loading conditions. This is shown by the simulation and experimental results obtained through testing the prototype.  相似文献   

11.
Abstract

This paper describes the design of a traveling‐wave ultrasonic motor (TWUSM) drive circuit, intended to simultaneously employ both driving frequency and phase modulation control. The operating principles and a detailed analysis of the proposed driving circuit, consisting of voltage‐controlled oscillator (VCO), voltage‐controlled phase‐shifter circuit and non‐resonant power amplifier converter, are introduced. To drive the USM effectively, a two‐phase power amplifier converter using non‐resonant output was designed to provide a balanced two‐phase voltage source. Two‐phase output driving voltages could be maintained at the same peak voltage value as the driving frequency under varying phase‐modulation processes. Detailed experimental results are provided to demonstrate the effectiveness of the proposed driving circuit.  相似文献   

12.
主要研究了数字控制的实际应用情况以及脉宽调制(PWM)正弦波逆变器的特点,包括电流内环电压外环的双闭环控制。在建立逆变器控制系统状态空间模型的基础上,详细分析了外环为输出电压,内环为电感电流加负载电流前馈控制对应的控制策略的稳定性和动态响应。先对控制系统直接离散化,再利用极点配置的方法进行系统参数设计。从响应速度、外特性、稳定性方面进行了具体分析,结果说明在离散域里双环控制逆变器具有较好的动态响应速度和输出外特性。最后通过实验验证和仿真波形分析,证明这种双环控制技术能满足各项性能指标要求。  相似文献   

13.
JAE-WON YANG  HYUN-LARK DO 《Sadhana》2013,38(4):653-665
A high-efficiency zero-voltage-switching (ZVS) step-up DC–DC converter is proposed. The proposed ZVS DC–DC step-up converter has fixed switching frequency, simple control, and high efficiency. All power switches can operate with ZVS. The output diodes are under zero-current-switching (ZCS) during turn-off. Due to soft-switching operation of the power switches and output diodes, the proposed ZVS DC–DC converter shows high efficiency. Steady-state analysis of the converter is presented to determine the circuit parameters. A laboratory prototype of the proposed converter is developed, and its experimental results are presented for validation.  相似文献   

14.
This paper focuses on an 8 kW LLC resonant full bridge DC-DC converter topology using a high frequency transformer for auxiliary power supply systems in traction. The full bridge DC-DC converter with the LLC resonant network has been tested under hard switching and zero current switching conditions with 100 kHz switching frequency. In addition to this, an observation made for the effect of dead time variation of the power switches to improve the overall system efficiency. This paper describes the efficiency of the ZCS full bridge converter by considering different input power levels and also compared with hard switched topology. This paper presents the operating principles, simulation analysis, and experimental verification for 3 kW to 8 kW LLC resonant full bridge converter with 1200 V/40 A IGBTs, and its efficiency comparison.  相似文献   

15.
The paper presents an active clamp buck-boost stage Cuk converter to achieve soft switching commutation. An auxiliary switch and a clamp capacitor are connected in parallel with the primary side of the transformer to absorb all the energy stored in the transformer leakage inductance. The resonant inductance and the clamp capacitance are resonant to achieve zero-voltage switching (ZVS) of the auxiliary switch. On the other hand, the resonance between the resonant inductance and output capacitance of the main switch will achieve ZVS of the main switch in the proposed converter. The principle of operation and system analysis are presented. Design considerations of the proposed converter are also provided. Experimental results for a 170 W prototype circuit operating at 70 kHz are given to demonstrate the effectiveness of the proposed converter  相似文献   

16.
This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV inverter output voltage, and the inverter operates in a current controlled mode. The current controller for grid connected mode fulfills two requirements – namely, (i) during light load condition the excess energy generated from the PV inverter is fed to the grid and (ii) during an overload condition or in case of unfavorable atmospheric conditions the load demand is met by both PV inverter and the grid. In order to synchronize the PV inverter with the grid a dual transport delay based phase locked loop (PLL) is used. On the other hand, during isolated grid operation the PV inverter operates in voltage-controlled mode to maintain a constant amplitude and frequency of the voltage across the load. For the optimum use of the PV module, a modified P&O based maximum power point tracking (MPPT) controller is used which enables the maximum power extraction under varying irradiation and temperature conditions. The validity of the proposed system is verified through simulation as well as hardware implementation.  相似文献   

17.
This paper presents a combined control and modulation technique to enhance the power quality (PQ) and power reliability (PR) of a hybrid energy system (HES) through a single-phase 11-level cascaded H-bridge inverter (11-CHBI). The controller and inverter specifically regulate the HES and meet the load demand. To track optimum power, a Modified Perturb and Observe (MP&O) technique is used for HES. Ultra-capacitor (UCAP) based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions. For an improved PQ and PR, a two-way current control strategy such as the main controller (MC) and auxiliary controller (AC) is suggested for the 11-CHBI operation. MC is used to regulate the active current component through the fuzzy controller (FC), and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller (ANN-PI). By tracking the reference signals from MC and AC, a novel hybrid pulse width modulation (HPWM) technique is proposed for the 11-CHBI operation. To justify and analyze the MATLAB/Simulink software-based designed model, the robust controller performance is tested through numerous steady-state and dynamic state case studies.  相似文献   

18.
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.  相似文献   

19.
A hysteresis-current-controlled (HCC) buck converter with active current-sensing and phase-frequencylocked techniques is presented in this paper. The proposed active current-sensing technique can not only consume less power than previous techniques, but also fully sense the inductor current. Although the buck converter is HCC, the switching frequency can be constant due to the devised phase-frequency-locked technique. The proposed converter has been designed and implemented with TSMC 0.35 microm DPQM CMOS processes. It is shown in the experimental results that the HCC buck converter features the following characteristics: 1) up to 800 mA of load current, 2) wide input and output voltage range, 3) high power efficiency, and 4) constant-frequency operation.  相似文献   

20.
为解决接触式供电中漏电、磨损、电能传输不良以及超声电源在加工中谐振频率漂移、跟踪速度慢、输出功率不稳定等问题,文章以STM32单片机作为主控系统,设计了一种频率和功率可调的非接触供电超声电源。根据采样反馈电路采集的电压电流相位差和有效值信号,采用锁相环和模糊比例积分(Proportional Integral, PI)控制相结合的方法对频率进行跟踪,并用传统 PI 控制法控制输出功率。在 Matlab 软件中搭建电源仿真模型,利用附加电阻、附加电感和附加电容模拟加工过程中负载参数的突变,对有频率调节和功率控制子系统以及没有子系统的电源模型分别进行仿真。仿真结果表明,电源输出功率稳定在 248 W。当负载参数发生改变时,电源的谐振频率发生漂移,经过频率自动跟踪子系统的调节后,电源在 0.01 s 后重新回到谐振状态。此控制算法实现了频率快速跟踪和功率控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号