首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
《微型机与应用》2019,(4):24-29
分析了SPECK2n(2n=64,96,128)算法在不可能差分分析下的安全性。首先利用模加法差分的扩散性质,找到了SPECK2n(2n=64,96,128)算法的7轮不可能差分区分器。其次,基于找到的7轮不可能差分区分器,给出了SPECK64/128算法和SPECK128/256算法的11轮不可能差分分析,以及SPECK 96/144算法的10轮不可能差分分析,恢复了全部主密钥。这是SPECK2n/4n(2n=64,96,128)算法的首个不可能差分分析结果。  相似文献   

2.
张仕伟  陈少真 《软件学报》2018,29(11):3544-3553
对于分组密码,不可能差分和零相关线性分析都是很重要的分析手段.通过研究非线性组件与(AND)的性质,首先得到用于刻画SIMON轮函数差分及线性传播特性的约束式,再基于布尔可满足约束问题(SAT),提出一种普适性不可能差分和零相关路径自动化搜索算法,并利用该算法搜索得到SIMON更多的不可能差分及零相关路径.除用于自动化搜索外,该算法还可判断特定的差分对(掩码对)是否能构成一条有效不可能差分和零相关路径.此外,基于该算法,从抵抗不可能差分攻击的角度出发,给出SIMON轮函数设计中循环移位常数的选取依据.  相似文献   

3.
新的轻量级密码算法ESF用于物联网环境下保护RFID标签以及智能卡等设备的通信安全.ESF算法是一种具有广义Feistel结构的32轮迭代型分组密码,轮函数是SPN结构.分组长度为64比特,密钥长度为80比特.通过不可能差分分析方法来寻找ESF算法的不可能差分特征,给出ESF算法8轮不可能差分区分器来攻击11轮ESF算法.实验结果表明,ESF对不可能差分密码分析有足够的安全免疫力.  相似文献   

4.
高红杰  卫宏儒 《计算机科学》2017,44(10):147-149, 181
轻量级分组密码算法ESF是一种具有广义Feistel结构的32轮迭代型分组密码,轮函数具有SPN结构,分组长度为64比特,密钥长度为80比特。为了研究ESF算法抵抗不可能差分攻击的能力,基于一条8轮不可能差分路径,根据轮密钥之间的关系,通过向前增加2轮、向后增加2轮的方式,对12轮ESF算法进行了攻击。计算结果表明,攻击12轮ESF算法所需的数据复杂度为O(253),时间复杂度为O(260.43),由此说明12轮的ESF算法对不可能差分密码分析是不免疫的。  相似文献   

5.
Pyjamask是美国国家技术标准研究院征选后量子时代轻量级密码算法中进入第二轮的候选分组密码,对其抵抗现在流行的不可能差分分析分析为未来在实际系统中使用起到重要的作用.提出一些2.5轮不可能差分链并分析它们的结构特点和攻击效率,在一些最有效的不可能差分链的前后各接1轮和半轮,形成4轮Py-jamask多重不可能差分攻击路径.攻击结果表明Pyjamask的行混淆运算扩散性比较强,能较好地抵抗不可能差分分析,此结果是对Pyjamask安全性分析的一个重要补充.  相似文献   

6.
目前资源受限环境的应用场景越来越多,该场景下的数据加密需求也随之增加。以国际标准PRESENT算法为代表的一大批轻量级分组密码应运而生。PFP算法是一种基于Feistel结构的超轻量级分组密码算法,它的轮函数设计借鉴了国际标准PRESENT算法的设计思想。PFP算法的分组长度为64比特,密钥长度为80比特,迭代轮数为34轮。针对PFP算法,研究了其抵抗不可能差分分析的能力。在该算法的设计文档中,设计者利用5轮不可能差分区分器攻击6轮的PFP算法,能够恢复32比特的种子密钥。与该结果相比,文中通过研究轮函数的具体设计细节,利用S盒的差分性质构造出7轮不可能差分区分器,并攻击9轮的PFP算法,能够恢复36比特的种子密钥。该结果无论在攻击轮数还是恢复的密钥量方面,均优于已有结果,是目前PFP算法最好的不可能差分分析结果。  相似文献   

7.
CRAFT算法是一种新型SPN结构的类AES型轻量级可调分组密码算法,可以有效地抵抗差分故障攻击.为了对CRAFT算法抵抗积分攻击的能力进行评估,采用基于混合整数线性规划(MILP)的方法自动化搜索比特可分性的工具,对CRAFT算法的积分区分器进行搜索,搜索到了最长为12轮的积分区分器,同时得到一条平衡比特数最多的9轮积分区分器.这是目前为止对该算法获得的最长区分器,同时利用这些积分区分器可以对算法进行更多轮的密钥恢复攻击.  相似文献   

8.
比特切片方法由Biham等人于1997年提出,该方法可以高效提升算法的软件实现性能,后来被广泛应用于Serpent、RECTANGLE、TANGRAM等分组算法.本文针对扩散层采用简单行循环移位的RECTANGLE、TANGRAM等比特切片型分组算法,根据算法S盒的性质以及行移位参数,给出了快速判断其是否存在单轮循环差分/线性特征的方法.基于找到的单轮循环差分/线性特征,结合MILP自动化搜索技术,实现了这类算法长轮数差分/线性特征的快速构造.进一步,我们扩展寻找单轮循环特征的思想,利用MILP方法自动化搜索了不超过4轮的循环差分/线性特征,基于此可以更方便构造长轮数差分/线性特征.利用此方法,我们找到了RECTANGLE算法的14轮差分特征和13轮线性特征, TANGRAM128算法的24轮差分特征和23轮线性特征, TANGRAM 256算法的48轮差分特征和44轮线性特征.特别地,我们找到的TANGRAM 256算法的44轮线性特征是目前找到的最长轮数的线性特征.我们的方法只依赖于算法的结构特点和S盒的性质,该研究对采用这种结构的分组算法长轮数差分/线性特征的寻找和相应算法的设计都有重要意义.  相似文献   

9.
SAFER++是欧洲信息工程的参选算法,并且是进入第2轮的7个候选算法之一。算法的设计者称5轮SAFER++算法可以抵抗差分分析。本文利用异或差分与模减差分串连得到3.75轮的高概率特征,对4轮SAFER++进行选择明文攻击。攻击过程的计算复杂度约为298.2次加密运算,数据复杂度是296,可以恢复出12字节的密钥。而且如果存在4轮特征(设计者称已经通过搜索的方法找到),可以利用本文提出的方法得到更高轮数的特征,用于攻击5轮以上的SAFER++算法。  相似文献   

10.
Crypton算法是基于Square算法设计的SPN结构类密码算法,由于其具备良好的软硬件性能而引起了广泛的关注.对Crypton分组密码算法在不可能差分分析下的安全性进行了研究.通过分析Crypton算法扩散层的性质,指出了现有7轮Crypton算法不可能差分分析中存在的问题,结合快速排序、分割攻击与早夭技术对7轮Crypton算法的不可能差分分析进行了改进,降低了其数据复杂度与时间复杂度;同时,通过并行使用4条不可能差分区分器,结合密钥扩展算法的性质给出了7轮Crypton算法的多重不可能差分分析结果,恢复了算法的主密钥;最后,在7轮Crypton算法的不可能差分分析的基础上向后拓展1轮,给出了8轮Crypton-256算法的不可能差分分析,恢复了其主密钥,其数据复杂度为2\\+{103}个选择明文,时间复杂度为2\\+{214}次8轮Crypton加密,存储复杂度为2\\+{154.4} B.研究结果表明:结合算法的性质及多种技术给出了Crypton算法目前最优的不可能差分分析结果.  相似文献   

11.
Zodiac 算法的不可能差分和积分攻击   总被引:2,自引:0,他引:2  
孙兵  张鹏  李超 《软件学报》2011,22(8):1911-1917
重新评估了Zodiac算法抗不可能差分攻击和积分攻击的能力.已有结果显示,Zodiac算法存在15轮不可能差分和8轮积分区分器.首先得到了算法概率为1的8轮截断差分,以此构造了Zodiac算法完整16轮不可能差分和9轮积分区分器.利用9轮积分区分器,对不同轮数Zodiac算法实施了积分攻击,对12轮、13轮、14轮、15轮和16轮Zodiac的攻击复杂度分别为234,259,293,2133和2190次加密运算,选择明文数均不超过216.结果表明,完整16轮192比特密钥的Zodiac算法也是不抗积分攻击的.  相似文献   

12.
官翔  杨晓元  魏悦川  刘龙飞 《计算机应用》2014,34(10):2831-2833
针对目前对SNAKE算法的安全性分析主要是插值攻击及不可能差分攻击,评估了SNAKE(2)算法对积分攻击的抵抗能力。利用高阶积分的思想,构造了一个8轮区分器,利用该区分器,对SNAKE(2)算法进行了9轮、10轮积分攻击。攻击结果表明,SNAKE(2)算法对10轮积分攻击是不免疫的。  相似文献   

13.
对MIBS算法的Integral攻击   总被引:2,自引:0,他引:2  
MIBS是M.Izadi等人在2009开发研制的轻量级分组密码算法,它广泛用于电子标签和传感器网络等环境.本文给出了对MIBS算法Integral攻击的4.5轮区分器,利用该区分器对MIBS算法进行了8轮和9轮的Integral攻击,并利用密钥编排算法中轮密钥之间的关系,结合“部分和”技术降低了攻击的时间复杂度.攻击结果如下:攻击8轮MIBS-64的数据复杂度和时间复杂度分别为238.6和224.2;攻击9轮MIBS-80的数据复杂度和时间复杂度分别为239.6和268.4.本文攻击的数据复杂度和时间复杂度都优于穷举攻击.这是对MIBS算法第一个公开的Integral攻击.  相似文献   

14.
陈玉磊  卫宏儒 《计算机科学》2016,43(8):89-91, 99
分析研究了分组密码算法ESF抵抗不可能差分的能力,使用8轮不可能差分路径,给出了相关攻击结果。基于一条8轮的不可能差分路径,根据轮密钥之间的关系,通过改变原有轮数扩展和密钥猜测的顺序,攻击了11轮的ESF,改善了关于11轮的ESF的不可能差分攻击的结果。计算结果表明:攻击11轮的ESF所需要的数据复杂度为O(253),时间复杂度为O(232),同时也说明了11轮的ESF对不可能差分是不免疫的。  相似文献   

15.
This paper studies the security of the block ciphers ARIA and Camellia against impossible differential cryptanalysis. Our work improves the best impossible differential cryptanalysis of ARIA and Camellia known so far. The designers of ARIA expected no impossible differentials exist for 4-round ARIA. However, we found some nontrivial 4-round impossible differentials, which may lead to a possible attack on 6-round ARIA. Moreover, we found some nontrivial 8-round impossible differentials for Camellia, whereas only 7-round impossible differentials were previously known. By using the 8-round impossible differentials, we presented an attack on 12-round Camellia without FL/FL^-1 layers.  相似文献   

16.
RAIN算法的设计基于国际上分组密码设计广泛采用的SPN(substitution permutation network)结构,通过迭代混淆层S盒和扩散层字混合提供强雪崩效应,不仅保证强的安全性,还兼顾了软硬件实现.算法支持64b分组和128b分组,2种不同的分组长度采用相同的轮函数结构实现,方案简洁优美.混淆层采用4b的S盒实现,在S盒实现的时候不仅考虑了其安全性,还考虑S盒的软硬件实现,与扩散层的混合运算结合提供高的实现性能.从差分分析、不可能差分分析、积分攻击和不变子空间分析4个方面对算法进行了自评估,在分析的过程中使用了一些最新的分析方法以及基于MILP(mixed integer linear programming)的自动化搜索等,结果显示:算法可以抵抗现有的分析方法,并且具有较大的安全冗余.RAIN算法软硬件实现效率高,在PC机、ARM平台和硬件FPGA(field programmable gate array)平台下都具有出色的实现性能.算法S盒可以转换为基本逻辑运算,抗侧信道攻击实现代价低.  相似文献   

17.
尚方舟  孙兵  刘国强  李超 《软件学报》2021,32(9):2837-2848
积分分析是一种针对分组密码十分有效的分析方法,其通常利用密文某些位置的零和性质构造积分区分器.基于高阶差分理论,可通过研究密文与明文之间多项式的代数次数来确定密文某些位置是否平衡.从传统的积分分析出发,首次考虑常数对多项式首项系数的影响,提出了概率积分分析方法,并将其应用于PUFFIN算法的安全性分析.针对PUFFIN...  相似文献   

18.
CLEFIA-128/192/256的不可能差分分析   总被引:3,自引:0,他引:3  
王薇  王小云 《软件学报》2009,20(9):2587-2596
对分组密码算法CLEFIA进行不可能差分分析.CLEFIA算法是索尼公司在2007年快速软件加密大会(FSE)上提出来的.结合新发现和新技巧,可有效过滤错误密钥,从而将算法设计者在评估报告中给出的对11圈CLEFIA-192/256的攻击扩展到11圈CLEFIA-128/192/256,复杂度为2103.1次加密和2103.1个明文.通过对明文附加更多限制条件,给出对12圈CLEFIA-128/192/256的攻击,复杂度为2119.1次加密和2119.1个明文.而且,引入一种新的生日筛法以降低预计算的时间复杂度.此外,指出并改正了Tsunoo等人对12圈CLEFIA的攻击中复杂度计算方面的错误.  相似文献   

19.
In this paper, we propose a new lightweight block cipher called SCENERY. The main purpose of SCENERY design applies to hardware and software platforms. SCENERY is a 64-bit block cipher supporting 80-bit keys, and its data processing consists of 28 rounds. The round function of SCENERY consists of 8 4 × 4 S-boxes in parallel and a 32 × 32 binary matrix, and we can implement SCENERY with some basic logic instructions. The hardware implementation of SCENERY only requires 1438 GE based on 0.18 um CMOS technology, and the software implementation of encrypting or decrypting a block takes approximately 1516 clock cycles on 8-bit microcontrollers and 364 clock cycles on 64-bit processors. Compared with other encryption algorithms, the performance of SCENERY is well balanced for both hardware and software. By the security analyses, SCENERY can achieve enough security margin against known attacks, such as differential cryptanalysis, linear cryptanalysis, impossible differential cryptanalysis and related-key attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号