首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
麻衡  何康  邹稳蓬  王竹青 《轧钢》2022,39(2):18-23
针对矿井用耐蚀高强钢的开发,介绍了新型耐蚀高强Q690D钢板化学成分、组织及力学性能。主要通过盐雾试验及电化学试验对普通Q690D、耐蚀Q690D钢板的耐蚀性能进行了测试,分析了耐蚀钢的多因素耦合的腐蚀规律,揭示了耐蚀钢的腐蚀机制。结果表明:耐蚀Q690D钢板中较高的Cr元素有利于降低试验钢基体表面的电位差,降低腐蚀倾向;钢板组织状态不同,表面电位差也有一定差异,耐蚀Q690D钢板经淬火+回火处理后得到的回火马氏体/贝氏体组织,强韧良好,耐蚀性较普通Q690D钢板提高1.5倍。EBSD表征结果表明:小角度晶界由于其高度有序结构,具有较小的自由体积和较低的界面能,能够打断大角度晶界的连通性,能够有效地阻断腐蚀沿着大角度晶界的扩展,所以腐蚀速率会随着小角度晶界比例的上升而下降。  相似文献   

2.
工程机械用低成本高强度Q550D钢板已研制成功。研究了Q550D钢板的显微组织、力学性能和回火工艺。研究结果表明,随着钢板厚度的增加,其组织也发生变化,由回火贝氏体加少量铁素体转变为粒状贝氏体加少量铁素体和少量珠光体。Q550D钢板的屈服强度达600 MPa以上,抗拉强度达700 MPa以上,断后伸长率大于18%,-20℃低温冲击吸收能量大于120 J。热轧后的Q550D钢板应在650℃左右回火。  相似文献   

3.
Q550D钢板的研制及其回火工艺的分析   总被引:1,自引:1,他引:0  
肖九红  曹波 《轧钢》2009,26(5):16-19
在工业试制条件下,通过成分设计和TMCP-T工艺设计,采用晶粒细化、沉淀强化、位错强化和 贝氏体组织强化等手段,辅以回火处理得到性能优异的低碳贝氏体Q550D高强钢板,其屈服强度约600-665MPa抗拉强度达725-775MPa金相组织为粒状贝氏体和细小板条贝氏体的混合组织。同时,分析了不同回火工艺对钢板组织结构与力学性能的影响。  相似文献   

4.
赵喜伟  龙杰  庞辉勇  吕建会 《轧钢》2022,39(3):103-107
采用常规化学成分、轧制和调质热处理工艺生产的超高强EH690钢板屈强比在0.96以上,为了实现钢板较低的屈强比,一般采用低碳、高合金的化学成分设计,然后再进行两次淬火(常温淬火Q+两相区淬火Q')+回火的工艺,生产工艺复杂,生产成本较高。为此,采用低合金化学成分设计,合理的控轧控冷工艺及亚温淬火+回火的热处理工艺,研究了不同亚温淬火温度、回火温度对EH690钢板力学性能和显微组织的影响。结果表明:所设计化学成分的EH690钢板经过815 ℃的亚温淬火+480 ℃回火热处理后,钢板具有合适比例的软相铁素体和硬相马氏体双相组织,这种组织在保证钢板具有较好力学性能的同时屈强比也降低到0.90左右。采用该工艺,简化了生产工艺流程,降低了生产成本,实现了低屈强比超高强EH690钢板的工业化大规模生产。  相似文献   

5.
《热处理》2020,(3)
低碳高强度Q690D钢适用于大型工程的结构件。对含碳量为0.14%~0.16%(质量分数)、厚度为100 mm的Q690D钢板进行了920℃水淬和分别于560℃、580℃及620℃回火处理。分别检测了钢板淬火态及淬火和不同温度回火后的显微组织和力学性能,以研究回火温度对钢板组织和性能的影响。结果表明:①淬火并经3种温度回火的钢板的力学性能均满足标准要求,随着回火温度的提高,强度略有下降,620℃回火的钢板屈服强度为810 MPa,抗拉强度为880 MPa,断后伸长率达16.5%,-20℃纵向冲击吸收能量达137 J;②淬火后钢板从表面到心部的组织均为板条马氏体和少量板条贝氏体,经560℃、580℃、620℃回火后,其组织为回火索氏体加板条贝氏体。综合起来看,大厚度Q690D钢板淬火后的回火温度以620℃最佳。  相似文献   

6.
研究了回火温度对经一定温度淬火后的Q890高强度钢组织和力学性能的影响。结果表明,从920℃淬火并于200~700℃回火时,随着回火温度的升高,Q890钢的淬火马氏体逐渐转变为回火马氏体、回火托氏体及回火索氏体,硬度总体呈下降趋势;600℃回火后,Q890钢的组织主要为回火托氏体,硬度为35HRC。此外,经从920℃淬火和600℃回火的5~25mm厚Q890钢板的屈服强度均大于900MPa,-40℃的冲击韧度均大于45J。  相似文献   

7.
钟友坤 《铸造技术》2014,(12):2851-2853
对Q690D钢板进行不同条件的调质热处理,研究了调质钢板的微观组织和力学性能。结果表明,随着淬火温度的升高,钢板的强度增大,韧性降低。随着回火温度的升高,钢板的强度降低,韧性增大。Q690D钢板的最佳调质处理工艺为930℃淬火保温10 min,650℃回火保温40 min。  相似文献   

8.
姜颖  向浪涛  徐华  黄微涛  王灿 《轧钢》2020,37(4):100-102
针对重钢4 100 mm产线生产的厚度为16~25 mm Q235D热轧钢板低温冲击性能不合问题,通过对钢板化学成分、金相组织和轧制工艺进行分析,发现产生沿晶界呈连续带状分布的珠光体组织,并且同时伴随有混晶现象是导致钢板低温冲击性能不合的主要原因。将精轧终轧温度提高至890~900 ℃,改善了钢板组织形态,获得均匀的组织,提高了Q235D钢板低温冲击性能,满足了标准要求。  相似文献   

9.
姜颖  向浪涛  徐华  黄微涛  王灿 《轧钢》2007,37(4):100-102
针对重钢4 100 mm产线生产的厚度为16~25 mm Q235D热轧钢板低温冲击性能不合问题,通过对钢板化学成分、金相组织和轧制工艺进行分析,发现产生沿晶界呈连续带状分布的珠光体组织,并且同时伴随有混晶现象是导致钢板低温冲击性能不合的主要原因。将精轧终轧温度提高至890~900 ℃,改善了钢板组织形态,获得均匀的组织,提高了Q235D钢板低温冲击性能,满足了标准要求。  相似文献   

10.
《热处理》2016,(6)
对尺寸为100 mm×400 mm×16 mm的Q960E高强钢试样进行了920℃水淬,然后分别于580℃、600℃和620℃回火,以研究回火温度对该钢的显微组织和力学性能的影响。结果表明,随着回火温度的提高,钢板强度逐渐下降但均满足标准要求,回火组织为索氏体组织。当600℃回火时,屈服强度为1 001 MPa,抗拉强度为1 038 MPa,断后伸长率达到了15.0%,-40℃纵向冲击吸收能量平均达到了59 J,为最优的强、韧性。考虑到钢的焊接工艺,淬火后Q960E高强钢应在600℃而不是在580℃或620℃回火。  相似文献   

11.
针对在线淬火厚规格高强钢板韧性提升问题,对比分析了在线淬火工艺与离线淬火工艺的差异;根据某产线在线淬火的工艺特点,建立了水冷模拟仿真模型,得到了60 mm厚Q550D钢板在线淬火过程中的温度场;根据实际的冷速,对钢板化学成分进行了优化设计,即提高碳当量,并添加Mo、Cr等强淬透性元素,以此提高材料的淬透性,在现有的冷却速率条件下得到以马氏体为主的组织,其回火后组织使钢板强韧性匹配良好,韧性明显改善,能够满足60 mm特厚调质高强钢板的性能要求。  相似文献   

12.
郭潇  王智聪  陈建超 《轧钢》2021,38(4):108-111
为满足市场对低温压力容器用钢板强度高、可焊接性好、抗断裂性能优异、韧性转变温度低且生产成本低的要求,河北普阳钢铁有限公司开发了美标调质型低温压力容器用钢板SA537 CL2.其采用低碳成分设计,并添加Cr合金元素来提高钢板的淬透性;通过生产试验,获得了最佳生产工艺参数,即第1阶段开轧温度不小于1 050℃,终轧温度95...  相似文献   

13.
针对南钢中厚板卷厂层流冷却装置下集管水流密度低、集管流量不可调节、热交换系数小、冷却效果差等问题,对冷却装置进行了改造。改造后可实现在线淬火功能,并开发了Q550、Q690、Q800等低碳高强钢板。结果表明,改进的层流冷却系统能够满足Q690、Q800高强钢在线淬火对冷却速率、温度均匀性和钢板板形的控制要求,且生产的钢板纵、横向力学性能均匀,组织细小。  相似文献   

14.
通过Gleeble-1500热模拟试验机,结合微观组织观察和硬度测试,绘制了Q690D厚规格钢板以不同速度连续冷却至室温的CCT曲线。结果表明,当冷速较低时,组织中存在先共析铁素体和珠光体区域,但其范围较小;冷却速度为3 ℃/s时,组织中出现板条贝氏体。试验钢在较宽的冷速范围内能够获得粒状贝氏体、粒状贝氏体+板条贝氏体组织。冷速达到15 ℃/s时,组织中即出现马氏体,试验钢淬透性较好,硬度值变化不明显。从试验钢板的调质组织观察发现,厚度截面不同位置的硬度值差异很小,组织特征相同,说明热模拟试验的结果同实际生产的厚规格钢板的组织及硬度具有高度的一致性。  相似文献   

15.
控制轧制中未再结晶区变形量是调控 DQ-T钢板组织与性能的关键参数。针对EH960钢板,将3 块 60 mm 厚钢坯热轧至 40 mm 厚度中间坯,待温至 850 ℃ 后再轧至 10、15、30 mm 厚度,随后进行直接淬火(DQ10、DQ15 和 DQ30)和 620 ℃ 回火(DQ10-T、DQ15-T 和 DQ30-T)热处理,研究了控制轧制中未再结晶区变形量对DQ钢板及DQ-T钢板组织与性能的影响。结果表明:提高未再结晶区变形量,可以有效地细化直接淬火后DQ钢板的马氏体板条组织。高温回火后的DQ-T钢板中遗传自马氏体板条的高密度晶体缺陷促进了碳化物的析出,提高了屈服强度;由于其原始奥氏体变形而呈现压扁形态,在冲击过程中产生断口分层扩大了纤维区,从而提高了低温韧性。但是,奥氏体变形量过大会导致淬火时马氏体相变偏向于某一取向,不利于马氏体区块等亚结构的形成,从而减少了大角度晶界的密度,不利于钢板低温冲击韧性。DQ15-T钢板具有较好的综合力学性能,其屈服强度为1 070 MPa,抗拉强度为1 098 MPa,-40 ℃冲击功为100 J。  相似文献   

16.
研究了不同冷却介质对贝氏体耐磨钢板组织和力学性能的影响。结果表明,轧制、低温回火及热轧后奥氏体化空冷低温回火耐磨板的组织为板条贝氏体铁素体和残留奥氏体,油冷、水冷热处理耐磨板的组织为板条马氏体和残留奥氏体。经轧制、低温回火及奥氏体化空冷低温回火,新型贝氏体耐磨钢板具有良好的强韧性配合。热轧后用控制奥氏体化介质冷却可以获得不同力学性能的耐磨钢板.  相似文献   

17.
Q890高强钢焊接淬硬倾向和冷裂纹敏感性   总被引:3,自引:3,他引:0       下载免费PDF全文
通过焊接热模拟试验、焊接热影响区最高硬度试验以及公式计算,分析了Q890钢的焊接淬硬倾向和冷裂纹敏感性.结果表明,稻垣道夫建立的经验公式比D·Vwer建立的理论经验公式更适用于计算厚板的焊接冷却时间t8/5.Q890钢焊接热影响区的粗晶区具有较强的淬硬倾向,调整焊前预热温度以及焊接热输入,对Q890钢热影响区的淬硬倾向无明显改善,但焊前预热能有效增大冷却时间t100,降低试验钢的焊接冷裂倾向.通过计算机拟合建立了冷却时间ts/5与焊接热影响区过热区硬度的关系式,经过验证该关系式能够对Q890钢最高硬度进行合理的预测.  相似文献   

18.
周中喜  温志红 《轧钢》2020,37(4):86-90
目前市场对中厚板的订单具有个性化和多样化的特点,而对于不同强度级别的钢板,化学成分设计往往是不同的,这样会增加不同钢坯冶炼之间衔接的时间及化学成分控制的难度,导致冶炼成本增加,工序复杂化。结合市场需求与生产实际,采用同一Q390低合金高强度钢板坯,通过不同的控轧控冷工艺,对Q390C和Q420C两种强度级别热轧钢板进行了试制。结果表明,通过控轧控冷技术,可以充分发挥细晶强化作用,采用同一Q390低合金高强度钢板坯实现了Q390C和Q420C两个强度级别热轧钢板的柔性生产。试制生产的两种钢板,强塑性及0 ℃冲击功均满足标准要求,Q420C钢板屈服强度达441 MPa以上,抗拉强度达579 MPa以上。采用柔性轧制技术,降低了Q420C高强钢板的生产成本。  相似文献   

19.
周中喜  温志红 《轧钢》2007,37(4):86-90
目前市场对中厚板的订单具有个性化和多样化的特点,而对于不同强度级别的钢板,化学成分设计往往是不同的,这样会增加不同钢坯冶炼之间衔接的时间及化学成分控制的难度,导致冶炼成本增加,工序复杂化。结合市场需求与生产实际,采用同一Q390低合金高强度钢板坯,通过不同的控轧控冷工艺,对Q390C和Q420C两种强度级别热轧钢板进行了试制。结果表明,通过控轧控冷技术,可以充分发挥细晶强化作用,采用同一Q390低合金高强度钢板坯实现了Q390C和Q420C两个强度级别热轧钢板的柔性生产。试制生产的两种钢板,强塑性及0 ℃冲击功均满足标准要求,Q420C钢板屈服强度达441 MPa以上,抗拉强度达579 MPa以上。采用柔性轧制技术,降低了Q420C高强钢板的生产成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号