首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以一个两对斜齿轮耦合的三平行轴转子系统膨胀机子系统为研究对象,建立了斜齿轮啮合副动力学模型和转子系统有限元模型,考虑了齿轮啮合刚度、方位角、啮合角、螺旋角以及主动轴转动方向的影响,推导出齿轮啮合刚度矩阵。基于模态叠加法,对弯-扭耦合转子系统膨胀机子系统进行了固有特性分析和瞬态方式的不平衡响应分析,得到齿轮啮合前、后系统加载处的不平衡响应变化曲线。研究表明,齿轮间的耦合使系统之间的振动强烈,系统可能会在某个非固有频率处不平衡响应进行积累叠加,出现最大振动的现象,同时识别出共振峰的产生机理。齿轮耦合对转子系统动力学特性产生了很大的影响,使系统振型表现为耦合振型,必须以耦合的方式分析系统的振动特性,为防止系统发生大的振动提供依据,对齿轮系统的设计和故障分析具有指导意义。  相似文献   

2.
为了分析齿轮系统动力学中的全耦合振动,提出采用虚拟样机建模的方法,将柔性转子引入到啮合耦合系统中,考虑齿轮时变啮合刚度、齿侧间隙和轴承间隙的影响,建立齿轮-柔性转子-轴承系统虚拟样机模型,通过求解模型的动力学方程得到系统的非线性动力学响应。仿真结果表明:考虑柔性转子的耦合系统,啮合冲击峰值下降明显;转子柔性增加,齿轮低频扭转振动出现"拍"现象;高速轻载时啮合振动非线性特性增强;轴承间隙增大使啮合力振动幅值显著增大。  相似文献   

3.
建立考虑齿轮-轴承转子系统多刚体、多柔体及刚柔耦合的动力学模型,并采用不同轴承刚度计算方法获得支撑刚度。在此基础上,研究系统支撑刚度对齿轮动态啮合力及振动位移等响应的影响规律,并与理论值对比分析。研究结果表明:刚性体模型仿真结果与理论值相比数值普遍偏大,而柔性体仿真结果与理论值基本一致;齿轮-轴承转子系统支撑刚度对齿轮动态响应产生较大影响,支撑刚度取3倍齿轮啮合刚度时,齿轮振动角速度等值与理论值基本相符。因此,利用柔性体模型并选择合理的支撑刚度对齿轮-轴承转子系统的动力学仿真分析具有实际意义。  相似文献   

4.
为分析齿轮传动复杂轴系的振动问题,根据有限元法和拉格朗日法,考虑陀螺效应、油膜支承等因素,得到了转子-轴承系统的弯扭耦合振动模型;在此基础上,根据齿轮副运动过程中啮合刚度和啮合阻尼的变化,得到了齿轮副系统的弯扭耦合振动模型。然后,根据齿轮副的实际排列方式,引入方位角,使得转子模型与齿轮副模型坐标统一化,并将其耦合到一起,得到了更加接近实际的齿轮转子模型,并且计算了其临界转速和振型。研究结果表明,耦合后转子的临界转速低于单转子的临界转速,齿轮传动对转子轴系振动有着明显影响。  相似文献   

5.
建立了一个三平行轴齿轮耦合转子系统的有限元模型,利用Matlab软件对其进行了固有特性的分析,通过与成熟有限元分析软件ANSYS的计算结果进行对比,验证了该模型和计算结果的正确性。并在此基础上,分别讨论了齿轮啮合刚度、安装角、螺旋角以及轴承刚度对系统弯-扭-轴-摆耦合固有特性的影响。结果表明,齿轮参数会影响系统耦合新频率,而轴承刚度则会造成系统固有频率的突变以及振型的变化。该研究结果为传动系统的优化设计提供了理论基础。  相似文献   

6.
随着机车速度的提高,对机车的运行安全性和稳定性提出了更高的要求。考虑不平衡质量、齿轮啮合刚度、轴承支撑刚度和轮轨接触的影响下,建立机车传动系统有限元单元动态模型。其次,采用迭代法,求取了临界转速值及振型响应。分析齿轮啮合刚度、轴承支撑刚度、轮轨接触力作用下,传动系统齿轮单元幅频响应变化。结果表明:复杂环境因素下,传动系统齿轮啮合频率及固有频率处,系统振动响应较大。轴承通过频率的振动响应微弱。轮轨接触刚度影响下,传动系统啮合频率、固有频率及轴承通过频率的振动响应受到极大干扰。  相似文献   

7.
基于能量解析法给出了转子-轴承-齿轮传动系统的动力学方程。并建立了耦合转子动力学系统的模型。建模过程中考虑了转子轴的剪切、弯曲、扭转、轴向力、陀螺效应及内阻尼的影响,考虑了不同形式的轴承即动压油膜轴承和滚动轴承的影响,同时也考虑了齿轮副的时变啮合刚度和传动误差的影响。为进一步的动力学特性分析提供了精确的模型。  相似文献   

8.
齿轮-转子系统的振动特性分析   总被引:5,自引:0,他引:5  
根据转子动力学和齿轮啮合的基本原理,建立了考虑陀螺力矩的齿轮转子系统的动力学模型,以此求得齿轮转子啮合刚度矩阵和阻尼矩阵。探讨了啮合刚度、支承刚度对系统固有频率以及系统稳定性的影响。结果表明齿轮的啮合刚度对弯曲振动以及弯扭耦合振动固有频率的影响不大,而当啮合刚度介于2×105~2×108之间时,对弯扭耦合振动的相对稳定性却有较大的影响;另增大支承刚度,固有频率相应提高;减小跨距可以提高系统的稳定性。分析结果对工程应用具有重要的意义。  相似文献   

9.
航空用齿轮具有结构轻量化和低刚性的特点,在齿轮副内部激励作用下容易发生横向振动,研究航空齿轮横向振动固有特性对航空齿轮设计十分必要。考虑齿轮腹板柔性、轴承刚度、齿轮轮齿啮合柔性,利用转子动力学有限元软件Samcef建立齿轮-转子有限元模型,计算出高速齿轮转子系统的固有频率、振型以及临界转速。基于Timoshenko节点动力学模型,计算出高速齿轮转子系统的固有频率、振型以及临界转速。两种模型计算出的齿轮-转子系统固有特性进行对比表明:考虑齿轮腹板柔性的Samcef有限元方法,可以得到齿轮-转子系统齿轮横向振动的频率值及振型,没有考虑齿轮柔性的Timoshenko梁单元方法,不能得到齿轮横向振动的频率值及振型。  相似文献   

10.
以一个两对斜齿轮耦合的三平行轴转子系统为研究对象,考虑静态传递误差和齿轮几何偏心等因素的影响,建立了全自由度通用齿轮啮合动力学模型。将其与转子系统有限元模型进行耦合,建立了平行轴系齿轮转子系统有限元模型。转子系统采用梁单元模拟,齿轮之间的啮合通过啮合刚度矩阵和阻尼矩阵模拟,并分析了不同自由度耦合下系统的固有特性和振动响应特性。研究结果表明,考虑弯扭耦合和弯扭轴摆耦合会产生较多的弯扭耦合频率,响应计算结果出现的峰值点均对应系统的固有频率,而考虑弯扭轴摆耦合可以更好地表征系统的不同自由度的耦合振动情况。此研究结果可为齿轮耦合转子系统设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号