共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
《机械强度》2017,(3):511-517
随着对机电设备安全性和可靠性要求的不断提高,准确获取趋势性故障发展历程的退化特征信息并建立有效的故障预测模型是提高设备运行可靠性的关键。隐马尔可夫模型(Hidden Markov Model,HMM)具有描述隐藏状态和观测状态的双随机过程属性,与设备的退化过程在某种程度上是相似的,因此成为故障预测模型的研究热点。综述国内外基于隐马尔可夫模型的退化评估与预测方法,重点论述基于隐马尔可夫模型及其改进方法隐半马尔可夫模型(Hidden semi-Markov Model,HSMM)的机械设备故障预测方法,分析比较各种方法的优缺点,并总结展望基于隐马尔可夫模型故障预测方法的发展趋势。 相似文献
3.
针对传统隐马尔可夫模型(hidden Markov model,简称HMM)状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-连续隐马尔可夫模型(hierarchical Dirichlet process-continuous hidden Markov model,简称HDP-CHMM)的机械设备性能退化评估方法。该方法利用分层狄利克雷模型的分层聚类原理,在狄利克雷过程(Dirichlet process,简称DP)模型的基础上进行扩展,利用多组关联数据实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合连续隐马尔可夫模型(continuous hidden Markov model,简称CHMM)良好的分析和建模能力,获得设备退化状态转移路径,实现机械设备运行过程中的退化状态识别和性能评估。利用滚动轴承全寿命数据的多组特征值进行了应用研究,并与基于K-S检验算法的机械设备零部件性能退化评估方法进行了比较。结果表明,HDP-CHMM模型可以对轴承实际运行状态转移过程进行建模,有效识别轴承运行中的不同退化状态,为基于状态的设备维修提供了理论指导。 相似文献
4.
随着传感器技术的不断发展,传感器在现代战争中得到广泛的应用。越来越多的信息使得信息融合成为未来战场计算机领域的研究重点。文中首先就当前的多种数据关联方法进行了研究,并进行实验。在对实验数据进行比较的基础上分析各种关联方法的性能状况。 相似文献
5.
为解决在役状态监测系统采用常规固定阈值报警方法难以追踪旋转机械性能退化发生和发展的问题,应用振动监测原始数据和实时监测原始数据构建了数据驱动的旋转设备性能退化趋势预测模型,提出一种基于谱距离指标运行可靠性曲线l1趋势滤波的旋转设备性能退化趋势预测方法.应用美国辛辛那提智能维修信息系统(I M S)中心轴承实验数据和中国... 相似文献
6.
滚动轴承作为旋转机械的重要零部件之一,其在工业中占有重要的地位,其可靠性直接影响设备能否安全、稳定运行.文章首先阐述了滚动轴承性能退化趋势预测的研究意义;接着梳理了滚动轴承性能退化趋势预测中关键难点性能退化指标构建对故障特征提取、降维和融合方法,然后进行了有效的性能退化趋势预测模型分类.最后,对滚动轴承性能退化趋势预测... 相似文献
7.
基于性能退化数据和竞争失效分析的可靠性评估 总被引:1,自引:0,他引:1
研究竞争失效模式下的可靠性评估问题,同时考虑退化失效和退化过程中的突发失效对系统可靠性的影响.针对退化轨迹建模方法的不足,采用退化量分布函数描述产品性能的退化过程.考虑突发失效与退化程度的相关性,提出从退化量角度计算突发失效的累计分布函数.在退化量分布函数中按照一定的条件概率剔除突发失效,建立竞争失效的可靠性评估模型,... 相似文献
8.
滚动轴承作为旋转机械的关键零部件,其剩余使用寿命(RUL)预测对生产维修和人身安全具有重要意义。由于滚动轴承复杂多变的工作环境,使得同工况的参考样本少而变工况的参考样本较多,具有不平衡、不完整、无标签及噪声干扰等特性,增加了滚动轴承RUL预测的困难。随着大数据时代的来临和人工智能的发展,滚动轴承RUL预测方法也变得更加丰富。因此,在故障预测与健康管理(PHM)的框架下,对滚动轴承失效模式和故障数据特点进行阐述,对故障特征提取、降维和融合方法以及得到的性能退化指标分别进行了分类和对比分析。结合数据驱动算法,对滚动轴承RUL的预测方法、模型选择和评估标准进行了梳理和对比。最后对滚动轴承RUL预测未来的发展趋势进行了展望。 相似文献
9.
11.
采用退化量分布法对性能退化数据建立可靠性评估模型需要多个严格的假设前提,在实际应用中难以满足.为了克服退化量分布法的不足,提出一种数据驱动的退化数据可靠性评估模型.首先构建非参数自适应核密度估计得到各时刻产品退化量的概率密度函数,进而计算产品各时刻可靠度,最后通过三参数威布尔分布对各时刻可靠度进行拟合获得产品性能的可靠度曲线.基于实例数据,通过K-S检验证明了该模型相对参数方法具有稳定性和优良性,且不易冒进,便于工程实际应用. 相似文献
12.
13.
退化特征提取是机械健康状态监测的重要组成部分,伴随旋转机械长时间连续运转,退化特征出现性能波动甚至下降,给退化特征提取和选择造成了困难.首先利用一个特征映射算法库对振动信号提取特征,并基于Kolnogorov-Smirnov (KS)检验和Benjamini-Yekutieli过程对原始特征集进行过滤,然后利用双目标优化遗传算法(Bi-objective Optimization Genetic Algorithm,BOGA)结合支持向量机分类器(Support Vector Classifier,SVC),在有监督的环境下搜索出最佳特征子集,其中BOGA设置了SVC分类精确度和特征子集维数两个目标函数,前者进行最大化,后者进行最小化.通过在液压泵退化状态数据集上进行实验和在凯斯西楚大学轴承数据集与FRESH_PCAa、ReliefF、JMIM三种方法进行对比,验证了该方法在退化状态识别上的较好性能. 相似文献
14.
基于HSMM的机械故障演化规律分析建模与预测 总被引:1,自引:0,他引:1
状态维修是工程实践中提出的一个主要问题,故障预测(prognostics)是实现状态维修的核心支撑技术。但是目前故障预测技术研究很少涉及故障演化规律分析与建模,这是进行故障预测研究的基础。文中在分析机械故障形成的一般过程、基本特性与演化规律的基础上,根据故障演变过程退化状态和HSMM(hidden semi-Markov model)的状态都是通过表现来感知的特点,利用HSMM对机械故障演化规律进行建模,并提出基于HSMM的机械故障预测方法,最后将其应用到滚动轴承的故障预测中,验证该方法的有效性。 相似文献
15.
16.