首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计Mg-9Gd-2Nd-xZn-1Zr合金(x=0, 1.1%, 1.6%, 2.3%, 4.6%,质量分数),对应的RE/Zn原子比分别为:不含Zn、1∶1、2∶1、3∶1和4∶1,通过改变RE/Zn比值来调控固溶态Mg-9Gd-2Nd-xZn-1Zr合金中LPSO相和共晶相的体积分数,探明固溶处理过程中层片状的LPSO相的调控及形成机理,改善合金的综合力学性能。通过OM、SEM、TEM以及室温拉伸实验,研究不同RE/Zn比值对铸造Mg-9Gd-2Nd-xZn-1Zr合金组织和力学性能的影响。结果表明,在未加Zn时,铸态合金组织由α-Mg、Mg5RE和富稀土相组成,随着Zn的加入Mg5RE相转化为(MgZn)3RE相,且第二相的体积分数显著提高。对铸态合金固溶处理后,不含Zn的合金第二相完全溶于基体,而随着Zn含量增加,晶界处残余的共晶相逐渐增加,并在晶粒内形成层片状的LPSO结构相,当RE/Zn原子比为3∶1时,合金室温屈服强度、抗拉强度和伸长率分别122 MPa、228 MPa和14.0%,此时具有最佳的综合力学...  相似文献   

2.
利用等离子体发射光谱仪(ICP)、光学显微镜(OM)、扫描电子显微镜(SEM)等分析手段研究了Mg-x Zn-y Gd(x=1~3,y=1~3)合金铸造态、挤压态的化学成分和微观组织演变,并测试其室温拉伸力学性能。研究结果表明:随着Gd含量的增加,铸态组织显著细化,枝状晶间距减小,其组分相Mg-Zn-Gd三元相面积分数逐渐增多,Mg Zn2相逐渐减少直至消失,第二相从晶界处呈连续网状分布转变成晶界断续和晶内均匀分布。挤压态组织得到细化,挤压过程发生了明显的动态再结晶,平均晶粒尺寸从Mg-3Zn合金的30μm降到Mg-2Zn-1Gd合金的10μm。第二相沿挤压方向趋于带状分布,部分弥散分布于晶内,成棒状或块状的Mg Zn Gd三元相,尺寸约为1~3μm。挤压态Mg-x Zn-y Gd合金的抗拉强度σ_b从Mg-3Zn的260 MPa提高到300 MPa,延伸率δ从13%提高到25%,屈服强度变化不大,σ_b和δ提高幅度分别为15.4%,92%。挤压态的显微硬度由Mg-3Zn的HV 52.1提高到Mg-3Zn-2Gd的HV 70.4,挤压态Mg-x Zn-y Gd合金室温拉伸断口呈现典型的韧性断裂特征,应力在第二相粒子处集中。  相似文献   

3.
采用拉伸力学性能测试、金相显微观察、扫描电镜及透射电镜等分析手段,研究了Al-4.5Zn-1.0Mg-0.5Cu-0.4Ag合金的强化固溶行为。结果表明:经强化固溶处理后,合金固溶态的抗拉强度和屈服强度以及伸长率分别较常规固溶的低15 MPa、16 MPa和1.7%;峰值时效态的抗拉强度和屈服强度较常规固溶的分别高62 MPa和68 MPa,伸长率低0.8%。;强化固溶可使Al-4.5Zn-1.0Mg-0.5Cu-0.4Ag合金固溶后的第二相粒子减少,但使其时效后的强化相数量增多,密度增大。  相似文献   

4.
为了探究Al元素在不同冷却速度下对Mg-9Gd合金组织细化效果及其对后续固溶处理的影响,利用铁模和铜模重力铸造制备了铸态Mg-9Gd-0.8Al合金,之后进行10~50 h的固溶处理。采用OM、SEM、TEM、EDS及XRD等方法研究了冷却速度对Mg-9Gd-0.8Al合金凝固和固溶行为及组织力学性能的影响。结果表明,铁模和铜模制备的铸态Mg-9Gd-0.8Al合金组织均由α-Mg基体、花瓣状(Mg, Al)3Gd相、细条状Mg5Gd相和方块状Al2Gd相组成。铜模相比于铁模冷却速度加快,制备的合金基体晶粒和第二相显著细化,第二相体积分数总量增长幅度达56.1%。2种模具制备的合金固溶10 h后,Mg5Gd相溶解、(Mg, Al)3Gd相部分溶解、高熔点Al2Gd相无变化,晶粒内析出层片状(Mg, Al)2Gd新相,第二相总量趋于相等。固溶50 h后,(Mg, Al)2Gd层片相回溶,残余(Mg, Al)3Gd相发生熔断呈颗粒状,铜模制备的合金第二相颗粒比铁模的更细小。细晶强化和第二相强化使铜模制备的铸态合金性能较铁模制备的合金性能大幅提高,固溶10 h后合金屈服强度提升,伸长率基本不变。固溶处理50 h后,固溶强化、细晶强化和细小颗粒的第二相强化使铜模制备的固溶50 h态合金获得最优性能,屈服强度、抗拉强度和伸长率分别为141 MPa、234 MPa和22.4%。  相似文献   

5.
采用拉伸力学性能测试、金相显微观察、扫描电镜及透射电镜等分析手段,研究了Al-4.5Zn-1.0Mg-0.5Cu-0.4Ag合金的强化固溶行为.结果表明:经强化固溶处理后,合金固溶态的抗拉强度和屈服强度以及伸长率分别较常规固溶的低15 MPa、16 MPa和1.7%;峰值时效态的抗拉强度和屈服强度较常规固溶的分别高62...  相似文献   

6.
为了探究Al元素在不同冷却速度下对Mg-9Gd合金组织细化效果及其对后续固溶处理的影响,利用铁模和铜模重力铸造制备了铸态Mg-9Gd-0.8Al合金,之后进行10~50 h的固溶处理。采用OM、SEM、TEM、EDS及XRD等方法研究了冷却速度对Mg-9Gd-0.8Al合金凝固和固溶行为及组织力学性能的影响。结果表明,铁模和铜模制备的铸态Mg-9Gd-0.8Al合金组织均由α-Mg基体、花瓣状(Mg, Al)3Gd相、细条状Mg5Gd相和方块状Al2Gd相组成。铜模相比于铁模冷却速度加快,制备的合金基体晶粒和第二相显著细化,第二相体积分数总量增长幅度达56.1%。2种模具制备的合金固溶10 h后,Mg5Gd相溶解、(Mg, Al)3Gd相部分溶解、高熔点Al2Gd相无变化,晶粒内析出层片状(Mg, Al)2Gd新相,第二相总量趋于相等。固溶50 h后,(Mg, Al)2Gd层片相回溶,残余(Mg, Al)3Gd相发生熔断呈颗粒状,铜模制备的合金第二相颗粒比铁模的更细小。细晶强化和第二相强化使铜模制备的铸态合金性能较铁模制备的合金性能大幅提高,固溶10 h后合金屈服强度提升,伸长率基本不变。固溶处理50 h后,固溶强化、细晶强化和细小颗粒的第二相强化使铜模制备的固溶50 h态合金获得最优性能,屈服强度、抗拉强度和伸长率分别为141 MPa、234 MPa和22.4%。  相似文献   

7.
通过金相显微镜、扫描电镜、透射电镜以及万能拉力试验机等,研究了Mg-7Gd-2.5Nd-0.5Zr(%,质量分数,下同)合金在固溶+人工时效情况下,显微组织和力学性能的变化。结果表明,铸态合金组织由α-Mg基体和粗大共晶相(α-Mg+Mg_5Gd+Mg_(12)Nd)组成,热处理后,合金组织中的颗粒方块相显著增多且长大,沿着晶界分布;合金组织析出的纳米尺寸颗粒方块相可有效强化合金性能。时效态合金的β'相形态类似纺锤形,彼此相互连接,夹角为120°,且有周期性。不同状态合金的室温抗拉强度分别为:铸态177.9 MPa、固溶态191.4 MPa和时效态247.1 MPa。  相似文献   

8.
通过X射线衍射、扫描电镜、金相组织分析和拉伸性能测试等方法,研究了Al对Mg-5Gd-3Y铸态合金组织和性能的影响。结果表明,Mg-5Gd-3Y铸态合金的组织由α-Mg基体和共晶相Mg5Gd和Mg24Y5组成。加入Al元素后,有新相Al2Gd、Al2Y析出,对合金的晶粒起到细化作用,有效提高了Mg-5Gd-3Y铸态合金的力学性能。  相似文献   

9.
Mg-6Sn-3Al-Zn合金分别在300℃、350℃、400℃、450℃下固溶8h,利用金相显微镜(OM),X射线衍射仪(XRD)等检测手段进行微观组织分析,利用万能测试机测定力学性能。结果表明,铸态Mg-6Sn-3Al-Zn合金主要由α-Mg基体、Mg_2Sn相组成,当固溶温度从300℃增加到400℃时,铸态Mg-6Sn-3Al-Zn合金组织中的Mg_2Sn相逐渐变得粗大,抗拉强度,屈服强度增强,由于析出相Mg_2Sn是硬淬相,因此在300℃到400℃之间,延伸率上升并不明显,450℃固溶8h,固溶效果好,Mg_2Sn相基本固溶到α-Mg基体当中,Mg2Sn相变得细小并呈弥散分布,导致延伸率快速升高,而力学性能由抗拉强度和屈服强度决定,弥散分布恰好能弥补这一缺陷。  相似文献   

10.
Mg-10Gd-4.8Y-0.6Zr合金在520℃下的固溶处理行为   总被引:1,自引:0,他引:1  
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、显微硬度测试、热分析、能谱分析以及X射线衍射(XRD)等手段,研究Mg-10Gd-4.8Y-0.6Zr合金铸态和520℃固溶处理不同时间后的显微组织以及显微硬度分布.结果表明:Mg-10Gd-4.8Y-0.6Zr合金经520℃/16 h固溶处理后,铸态时的...  相似文献   

11.
《稀土》2015,(1)
为了提高Mg-8Li-3Gd-3Y-0.6Al合金铸锭的力学性能,对合金进行了均匀化退火处理。通过金相显微镜、扫描电镜、显微硬度测试、X射线衍射、拉伸力学性能测试等手段,研究了均匀化条件对Mg-8Li-3Gd-3Y-0.6Al合金的显微组织和力学性能的影响。结果表明,铸态合金经773K 8h的均匀化处理后,铸态时的网状相完全溶解到基体中,第二相弥散分布在基体中,同时退火态合金的抗拉强度达到了154 MPa,比铸态合金提高了23%。合金最佳的均匀化退火工艺是773K 8h,此时该合金具有较好的综合力学性能。  相似文献   

12.
为提高WE系列生物镁合金的力学性能,采用重力铸造法制备了Mg-5Y-2Nd-1Gd-0.5Zr (质量分数,WE53)镁合金,并对铸态合金进行了固溶处理(T4),固溶+时效处理(T6)和挤压加工.利用光学显微镜和扫描电子显微镜观察了合金的显微组织,并利用拉伸试验机和显微硬度计测试了合金室温力学性能.结果表明,铸态合金屈服强度为130 MPa,伸长率为10.2%,T6处理可显著提高铸态合金的强度和硬度,降低合金的伸长率;挤压变形明显提高合金的强度和硬度,伸长率与铸态相当.通过适当的热处理和挤压变形可显著改善WE53镁合金的力学性能.  相似文献   

13.
为了研究Mg-Zn-Gd系合金中的相组成,采用热力学计算软件Pandat和Mg热力学数据库,外推计算了Mg-Gd-Zn系合金富镁角的水平截面图与垂直截面图,用Mg-6Gd-2Zn和Mg-6Gd-4Zn两种合金对该外推相图进行验证和修正,并在200℃下对该铸态合金保温480 h进行平衡处理,用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及差热分析(DSC)对该平衡处理后的合金的平衡相组成及凝固过程的相变温度点进行分析。通过计算相图可知Mg-Gd-Zn系合金富镁角的平衡组织为α-Mg,Mg5Gd,MgZn三种平衡相;通过XRD可知该系合金中主要有α-Mg,Mg5Gd,MgZn 3种平衡相;通过DSC可知,Mg-6Gd-2Zn与Mg-6Gd-4Zn合金的液相线、固相线及过饱和固溶体析出相的相变温度的实验测定值与计算值误差分别为1.92%,4.99%,3.68%和0.05%,3.67%,0.16%,说明计算相图得到的相与XRD,DSC实验结果测得的相相符,证明此数据库外延计算相图可以使用;通过SEM照片及EDS分析可知Mg-Zn-Gd合金晶界处有板块状的Mg5(Gd,Zn)化合物与颗粒状Mg(Gd,Zn)化合物;通过计算得到的Mg-Gd-Zn系平衡相图的平衡组织为α-Mg+Mg5Gd+MgZn,而修正后的平衡组织为α-Mg+Mg5(Gd,Zn)+Mg(Gd,Zn)。  相似文献   

14.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱仪和电子拉伸试验机,研究了不同Sn含量对Mg-5Gd-3Y-0.5Zr合金显微组织、力学性能以及拉伸断口形貌的影响。结果表明,铸态Mg-5Gd-3Y-0.5Zr合金主要由基体α-Mg、Mg5Gd和Mg24Y5相组成,Sn的添加能够细化合金组织,在合金中生成新相Sn3Y5,促进合金中第二相的析出。Mg-5Gd-3Y-0.5Zr-0.5Sn合金中第二相呈现出分布均匀的颗粒状,Mg-5Gd-3Y-0.5Zr-1.0Sn合金中部分区域出现了长条状第二相,Mg-5Gd-3Y-0.5Zr-1.5Sn合金中部分区域出现了方块状第二相。在本文研究范围内,随着Sn含量的增加,合金的抗拉强度、伸长率以及布氏硬度都呈现出先上升后下降的趋势。Sn含量为0.5%时,铸态合金综合性能最好,此时合金的抗拉强度、伸长率以及布氏硬度分别为177 MPa、6.87%和57.47 HBW,与无Sn合金相比分别提高了5.36%、12.25%和11.96%。  相似文献   

15.
Mg-9.0Y-3.0MM-0.6Zr合金均匀化热处理研究   总被引:1,自引:1,他引:0  
通过OM,SEM及拉伸性能测试,研究了Mg-9.0Y-3.0MM-0.6Zr铸态合金均匀化温度与时间对显微组织的影响,确定该合金合适的均匀化工艺。结果表明:Mg-9.0Y-3.0MM-0.6Zr铸态合金显微组织主要由α-Mg基体相、Mg12(MM)相以及Mg24Y5相组成,晶粒度约为45μm;505,520℃均匀化温度较低,Mg-Y相分解不够完全;经535℃保温18 h均匀化处理后,仅在晶界处残留Mg12(MM)相,延长时间晶粒尺寸没有变化,可见Mg12(MM)相可有效抑制合金晶粒长大;535℃×18 h均匀化处理后合金的力学性能较铸态合金没有明显改变,均匀化态的合金经挤压后,力学性能大幅度提升,σ0.2,σb,δ分别为245,305 MPa和12.5%。均匀化处理后合金断口形貌与铸态合金相似,仅在局部存在少量的韧窝,室温下断裂方式为脆性断裂;挤压后的合金断口形貌呈典型的韧性断裂特征。  相似文献   

16.
稀土元素Sm对Mg-Zn-Y合金组织结构和力学性能的影响   总被引:1,自引:0,他引:1  
制备了Mg-6Zn-1.5Y-0.8Zr-xSm(x=0,1,2,3)系列合金,研究了稀土元素Sm对Mg-6Zn-1.5Y-0.8Zr合金组织结构和力学性能的影响.通过金相显微镜、扫描电镜、EDS、XRD等观察和分析了合金的微观形貌和组织结构,测量了合金抗拉强度、屈服强度和伸长率等力学性能.结果表明:合金中添加稀土元素Sm后晶粒有了明显的细化,随着Sm元素含量的增加,晶粒细化效果更为明显;通过XRD分析,添加Sm元素后,合金中并没有出现新的含Sm的物相,通过扫描电镜和EDS分析表明,合金中加入的Sm置换了部分Y,形成了Mg3( SmY)2 Zn3,Mg3( SmY) Zn6的相结构,Sm元素对Y的置换主要出现在Mg3( SmY) Zn6结构当中,在Mg3 (SmY) Zn6相结构出现较少;力学性能测试结果表明,随着Sm含量增多,合金晶粒细化,细晶强化作用明显,合金屈服强度逐渐增大,而抗拉强度和伸长率在Sm含量为2%时达到最大,比未添加Sm元素时提高约15%以上.  相似文献   

17.
《稀土》2021,(2)
采用OM、SEM、TEM、EBSD、XRD和万能材料试验机等手段研究了铸态、退火态、热变形+时效态、固溶态等四种状态下Mg-10Gd稀土镁合金的微观组织和力学性能。结果表明,铸态合金组织由α-Mg基体和晶界处的不连续Mg_5Gd共晶相组成;退火态合金组织为α-Mg固溶体;热变形+时效态合金主要由动态再结晶组织和弥散分布在晶粒内部的β′-Mg_7Gd相组成;固溶态合金组织为α-Mg固溶体,β′相完全溶解。由于β′相的析出强化作用,四种状态合金中热变形+时效态合金具有最高的抗拉强度为371MPa。铸态合金的断口处伴随着晶界共晶相的破裂,其主要断裂形式为准解理断裂。热变形+时效态合金拉伸断裂形式为撕裂棱和微孔聚合复合作用形成的准解理断裂。退火态和固溶态的断裂形式是以撕裂棱为主的准解理断裂。  相似文献   

18.
通过添加少量的Zn元素制备了(%,质量分数)Mg-2.0Mn-x Zn(x=0,0.5,1.0,1.5,2.0)合金。对合金进行挤压变形,并利用光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)等手段,研究了少量的Zn元素对Mg-Mn合金组织及力学性能的影响。实验结果表明,Mg-2.0Mn-x Zn合金的铸态及挤压态组织中主要含有的第二相为颗粒状的α-Mn相,Zn元素均匀固溶于Mg基体中。少量添加的Zn元素可以显著细化铸态Mg-Mn-Zn镁合金的晶粒尺寸。随着Zn含量增加,挤压态合金中动态再结晶区域增加,混晶组织呈减少趋势。少量添加Zn元素对挤压态Mg-2.0Mn合金的强度及塑性都有明显的改善作用,尤其是合金的屈服强度最高增加42%,延伸率增加57%。随着Zn添加量增加,合金强度的增加趋势减弱。SEM观察显示挤压态Mg-2.0Mn-x Zn合金拉伸试样的断口形貌以韧窝及解理台阶为主,呈现韧性断裂与准解理断裂的混合断口形貌。  相似文献   

19.
采用金相、扫描电镜、能谱分析、拉伸性能等分析检测方法研究了一种新型Al-8.8Zn-2.3Mg-1.8Cu-0.13Zr合金型材热处理过程的组织与性能演变。结果表明,挤压态试验合金中主要有α(Al)、(AlCuZn)_2Mg、MgZn_2相,(AlCuZn)_2Mg发生相转变的起始温度为476.9℃,且随固溶温度的提高,第二相回溶充分,再结晶比例逐渐增加;470℃~480℃固溶并时效后合金的强度较高,但480℃时发生轻度过烧,塑性下降;合金较适宜的固溶温度为470℃~475℃。  相似文献   

20.
采用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)以及X射线衍射(XRD)等手段,研究了不同Gd含量(1%,2%,3%,原子分数)与不同热处理状态(铸态,固溶态,时效态)对Mg-Gd-Zr合金显微组织和力学性能的影响。结果表明:铸态组织中,Gd元素富集在晶界,随Gd含量增加,共晶组织增多,并逐渐呈网状分布,合金的晶粒逐渐变小。经过535℃,24 h固溶处理,共晶组织分解,残留相主要为富Gd的方块相,数量随Gd含量升高增加,晶粒尺寸比铸态组织长大。再经过220℃,24 h时效处理,合金中析出第二相,晶粒尺寸与固溶态差别不大。合金的抗拉强度,屈服强度和硬度(R_m,R_(p0.2),HB)随Gd含量增加呈上升趋势,断后伸长率随Gd含量升高呈降低趋势。经过535℃,24 h固溶处理,消除了铸造应力,且使合金晶粒长大,降低了合金强度。时效处理后,合金中析出第二相,合金强度升高,且Gd含量越高析出第二相越多,强化效果越明显。拉伸断裂后,铸态合金呈解理断裂,固溶态合金呈穿晶断裂,时效态合金呈沿晶断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号