首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5) , the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and -40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings. SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and -26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.  相似文献   

2.
A statistical parametric model of returning echoes from myocardium is theorized in order to investigate the relationship between normal myocardium structure and spectral signatures with the use of ultrasonic tissue characterization. It is hypothesized, that in a clinical setting the normal myofiber architecture in the left ventricular wall is structured as a matrix of cylindrical scatterers whose orientation and spatial distribution vary according to two different statistical distribution laws: (1) a Gaussian law to approximate parametric angular myofiber variability at each site within the myocardial wall; (2) a gamma distribution law to describe parametric regularity in scatterer interdistance. In the model, the effect of the angle of insonification with respect to the alignment of myofibers on ultrasound backscatter was considered. The slope of the power spectral density (PSD) evaluated within the echocardiographic transducer bandwidth has been used as a ultrasonic tissue characterization parameter. The model has been tested by computer simulation and in vitro measurements on myocardial pig tissue specimens. The concordance between experimental and simulated results confirms that the model accounts for the process underlying the echo formation from normal myocardium. Moreover, it provides a simple method of simulation which can be easily implemented and used for the assessment of pathologic alterations  相似文献   

3.
The DSR (dynamic spatial reconstructor), a multiple X-ray source scanner that generates stop action three-dimensional (3-D) images of a cylindrical volume, was used for quantitative imaging of left ventricular 3-D wall geometry and function in experimentally induced canine left ventricular myocardial infarction. Impaired regional myocardial function was induced by myocardial ischemia or infarction in four mongrel dogs by closed-chest occlusion of the proximal left anterior descending (LAD) coronary artery. At intervals of 6-14 weeks post occlusion, the dogs were scanned with the DSR during biatrial contrast injection. The 3-D shape, extent, and function of hypokinetic myocardium was measured from the DSR images utilizing measurement of the rate of local systolic wall thickening to detect regions of normal, ischemic, or scarred myocardium. The results were compared to scar size and anatomic distribution measured at postmortem examination. The anatomic extent and relationship of hypocontractile to normally contracting muscle was visualized by computer generated, pseudo 3-D shaded surface displays of the left ventricular chamber and by topographic projections of regional wall thickening rates onto a map of the left ventricular endocardial surface. The location of myocardial infarction and the surrounding zone of impaired function is clearly defined by this 3-D CT scanning procedure. The display method presented here provides both localization and quantification of the volume of ischemic and infarcted myocardium.  相似文献   

4.
Due to rapid change of fiber orientation, it is difficult to measure myocardial impedivity separately in a longitudinal or transverse fiber direction without mutual influence in the two directions. Previously published values of the longitudinal and the transverse myocardial impedivity were derived indirectly from measurements that mixed the impedivity in all directions. Those values are questionable because the derivations were based on a simplified uniform myocardial fiber model. In this paper, a miniature rectangular tube was devised to facilitate direct measurement of myocardial impedivity in a uniform fiber direction. The average transverse-to-longitudinal ratio of the measured in vitro swine myocardial impedivity was about 1.66 from 1 Hz to 1 kHz and dropped to 1.25 at 1 MHz. The result is important for accurate modeling of the electrical property of myocardium in biomedical research of radio-frequency cardiac catheter ablation.  相似文献   

5.
刺五加冻干粉针剂(ASHFI)对实验性心肌梗死犬心肌的影响   总被引:1,自引:0,他引:1  
目的:观察刺五加冻千粉针剂(Acanthopanax senticosus harms freeze-dry injection ASHFI)对心肌三酶、心肌梗死面积、心肌细胞超微结构的影响。方法:采用麻醉开胸结扎犬的冠状动脉左前降支制备急性心肌梗死模型,取血测心肌三酶(AST、CPK、LDH);组织学切片染色法和落点求积法测量心肌梗死区面积和非梗死区面积;采用透射电镜观察心肌细胞超微结构。结果:刺五加冻千粉针剂可以减少心肌三酶的释放,降低缺血造成的心肌细胞损伤,减少缺血心肌的梗死范围,对缺血心肌具有保护作用。  相似文献   

6.
We studied dielectrical properties of canine myocardium during acute ischemia and hypoxia using dielectrical spectroscopy method at frequency spectrum from 100 kHz to 6 GHz. This study was conducted on a group of six canines with acute ischemia and seven canines with hypoxia. Hypoxia (10% for 30 min) decreases myocardial resistance (rho), while the dielectrical permittivity (epsilon') of the myocardial tissue remains statistically unchanged. Acute ischemia for 2 hr causes significant frequency-dependent changes in both epsilon' and rho of myocardial tissue. Myocardial resistance increases, while the sign and amplitude of changes in the myocardial epsilon' are frequency and time dependent. These observations open up an opportunity for assessing the properties of myocardial tissue using dielectrical spectroscopy as well as noninvasively with the help of imaging methods based on electrical impedance and microwave tomography.  相似文献   

7.
A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (Φ ϵ) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of Φϵ, and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of Φ ϵ, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle  相似文献   

8.
This paper examines the combined action of cardiac fiber curvature and transmural fiber rotation in polarizing the myocardium under the conditions of a strong electrical shock. The study utilizes a three-dimensional finite element model and the continuous bidomain representation of cardiac tissue to model steady-state polarization resulting from a defibrillation-strength uniform applied field. Fiber architecture is incorporated in the model via the shape of the heart, an ellipsoid of variable ellipticity index, and via an analytical function, linear or nonlinear, describing the transmural fiber rotation. Analytical estimates and numerical results are provided for the location and shape of the "bulk" polarization (polarization away from the tissue boundaries) as a function of the fiber field, or more specifically, of the conductivity changes in axial and radial direction with respect to the applied electrical field lines. Polarization in the tissue "bulk" is shown to exist only under the condition of unequal anisotropy ratios in the extra- and intracellular spaces. Variations in heart geometry and, thus, fiber curvature, are found to lead to change in location of the zones of significant membrane polarization. The transmural fiber rotation function modulates the transmembrane potential profile in the radial direction. A higher gradient of the transmural transmembrane potential is observed in the presence of fiber rotation as compared to the no rotation case. The analysis presented here is a step forward in understanding the interaction between tissue structure and applied electric field in establishing the pattern of membrane polarization during the initial phase of the defibrillation shock.  相似文献   

9.
The purpose of this study is to evaluate how well bipolar and intramural potentials are able to classify the state of the myocardium (normal or infarcted) proximal to the electrode recording sites. Nine mongrel dogs with anterior myocardial infarcts were used to generate a database for the study. Classification of the myocardium as normal or infarcted was attempted from potentials recorded in and around the infarcted region using electrodes within plunge needles. In addition to the potentials, the database contains the locations of the plunge needles, the grossly visible borders of the infarcts, and the epicardium and endocardium of both ventricles.  相似文献   

10.
11.
Myocardial ischemia creates abnormal electrophysiological substrates that can result in life-threatening ventricular arrhythmias. Early clinical identification of ischemia in patients is important to managing their condition. We analyzed electrograms from an ischemia-reperfusion animal model in order to investigate the relationship between myocardial ischemia and variability of electrocardiogram (ECG) multifractality. Ventricular epicardial electropotential maps from the anesthetized pig during LAD ischemia-reperfusion were analyzed using multifractal methods. A new parameter called the singularity spectrum area reference dispersion (SARD) is presented to represent the temporal evolution of multifractality. By contrasting the ventricular epicardial SARD and range of singularity strength (delta alpha) maps against activation-recovery interval (ARI) maps, we found that the dispersions of SARD and dleta alpha increased following the onset of ischemia and decreased with tissue recovery. In addition, steep spatial gradients of SARD and delta alpha corresponded to locations of ischemia, although the distribution of multifractality did not reflect the degree of myocardial ischemia. However, the multifractality of the ventricular epicardial electrograms was useful for classifying the recoverability of ischemic tissue. Myocardial ischemia significantly influenced the multifractality of ventricular electrical activity. Recoverability of ischemic myocardium can be classified using the multifractality of ventricular epicardial electrograms. The location and size of regions of severe ischemic myocardium with poor recoverability is detectable using these methods.  相似文献   

12.
We developed a two-dimensional ventricular tissue model in order to probe the determinants of electrocardiographic (ECG) morphology during acute and chronic ischemia. Hyperkalemia was simulated by step changes in [K+]out, while acidosis was induced by reducing Na+ and Ca2+ conductances. Hypoxia was introduced by its effect on potassium activity. During the initial moments of ischemia, ECG changes were characterized by increases in QRS amplitude and ST segment shortening, followed in the advanced phase by ST baseline elevation, T conformation changes, widening of the QRS and significant decreases in QRS amplitude in spite of an enlarged Q. During each phase, potential proarrhythmic mechanisms were investigated. The presence of unexcitable regions of simulated myocardial infarction led to polymorphic ECG. We also observed a nonuniform deflection of the ST segment from beat to beat. We used similar protocols to explore the responses of infarcted myocardium after impairment resolving. We found that despite irreversible uncoupling of the necrotic region, the restored normal ionic concentrations produced an isopotential ST segment and monomorphic ECG complexes, while an enlarged Q wave was still visible. In summary, these numerical experiments indicate the possibility to track in the ECG pathologic changes following the altered electrophysiology of the ischemic heart.  相似文献   

13.
In order for the conductance catheter system to accurately measure instantaneous cardiac blood volume, it is necessary to determine and remove the contribution from parallel myocardial tissue. In previous studies, the myocardium has been treated as either purely resistive or purely capacitive when developing methods to estimate the myocardial contribution. We propose that both the capacitive and the resistive properties of the myocardium are substantial, and neither should be ignored. Hence, the measured result should be labeled admittance rather than conductance. We have measured the admittance (magnitude and phase angle) of the left ventricle in the mouse, and have shown that it is measurable and increases with frequency. Further, this more accurate technique suggests that the myocardial contribution to measured admittance varies between end-systole and end-diastole, contrary to previous literature. We have tested these hypotheses both with numerical finite-element models for a mouse left ventricle constructed from magnetic resonance imaging images, and with in vivo admittance measurements in the murine left ventricle. Finally, we propose a new method to determine the instantaneous myocardial contribution to the measured left ventricular admittance that does not require saline injection or other intervention to calibrate.  相似文献   

14.
The four-dimensional (4-D) NURBS-based cardiac-torso (NCAT) phantom, which provides a realistic model of the normal human anatomy and cardiac and respiratory motions, is used in medical imaging research to evaluate and improve imaging devices and techniques, especially dynamic cardiac applications. One limitation of the phantom is that it lacks the ability to accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary artery disease (CAD). The goal of this work was to enhance the 4-D NCAT phantom by incorporating a physiologically based, finite-element (FE) mechanical model of the left ventricle (LV) to simulate both normal and abnormal cardiac motions. The geometry of the FE mechanical model was based on gated high-resolution X-ray multislice computed tomography (MSCT) data of a healthy male subject. The myocardial wall was represented as a transversely isotropic hyperelastic material, with the fiber angle varying from -90 degrees at the epicardial surface, through 0 degrees at the midwall, to 90 degrees at the endocardial surface. A time-varying elastance model was used to simulate fiber contraction, and physiological intraventricular systolic pressure-time curves were applied to simulate the cardiac motion over the entire cardiac cycle. To demonstrate the ability of the FE mechanical model to accurately simulate the normal cardiac motion as well as the abnormal motions indicative of CAD, a normal case and two pathologic cases were simulated and analyzed. In the first pathologic model, a subendocardial anterior ischemic region was defined. A second model was created with a transmural ischemic region defined in the same location. The FE-based deformations were incorporated into the 4-D NCAT cardiac model through the control points that define the cardiac structures in the phantom which were set to move according to the predictions of the mechanical model. A simulation study was performed using the FE-NCAT combination to investigate how the differences in contractile function between the subendocardial and transmural infarcts manifest themselves in myocardial Single photon emission computed tomography (SPECT) images. The normal FE model produced strain distributions that were consistent with those reported in the literature and a motion consistent with that defined in the normal 4-D NCAT beating heart model based on tagged magnetic resonance imaging (MRI) data. The addition of a subendocardial ischemic region changed the average transmural circumferential strain from a contractile value of -0.09 to a tensile value of 0.02. The addition of a transmural ischemic region changed average circumferential strain to a value of 0.13, which is consistent with data reported in the literature. Model results demonstrated differences in contractile function between subendocardial and transmural infarcts and how these differences in function are documented in simulated myocardial SPECT images produced using the 4-D NCAT phantom. Compared with the original NCAT beating heart model, the FE mechanical model produced a more accurate simulation for the cardiac motion abnormalities. Such a model, when incorporated into the 4-D NCAT phantom, has great potential for use in cardiac imaging research. With its enhanced physiologically based cardiac model, the 4-D NCAT phantom can be used to simulate realistic, predictive imaging data of a patient population with varying whole-body anatomy and with varying healthy and diseased states of the heart that will provide a known truth from which to evaluate and improve existing and emerging 4-D imaging techniques used in the diagnosis of cardiac disease.  相似文献   

15.
Classical measurements of myocardium tissue electrical impedance for characterizing the morphology of myocardium cells, as well as cell membranes integrity and intra/extra cellular spaces, are based on the frequency-sweep electrical impedance spectroscopy (EIS) technique. In contrast to the frequency-sweep EIS approach, measuring with broadband signals, i.e., multisine excitations, enables to collect, simultaneously, multiple myocardium tissue impedance data in a short measuring time. However, reducing the measuring time makes the measurements to be prone to the influence of the transients introduced by noise and the dynamic time-varying properties of tissue. This paper presents a novel approach for the impedance-frequency-response estimation based on the local polynomial method (LPM). The fast LPM version presented rejects the leakage error's influence on the impedance frequency response when measuring electrical bioimpedance in a short time. The theory is supported by a set of validation measurements. Novel preliminary experimental results obtained from real-time in vivo healthy myocardium tissue impedance characterization within the cardiac cycle using multisine excitation are reported.  相似文献   

16.
This paper presents a preliminary study showing the diagnostic potential of electrical impedance to detect basal cell carcinoma (BCC). Electrical impedance was measured in vivo from 1 kHz to 1 MHz on 24 human subjects over BCC (19 lesions), over benign tumors (11 lesions), and over normal skin (all 24 patients). Lesions ranged from 2-15 mm in diameter. Indexes based on the magnitude (MIX), phase (PIX), real-part (RIX) and imaginary-part (IMIX) of impedance were calculated for each measurement. Significant differences were found between measurements over BCC, benign lesions and normal skin for indexes MIX, PIX, and IMIX (P = 0.04 to P = 7 x 10(-7)). Indexes were generally smaller for measurements of BCC than for benign lesions or normal skin. Differences were not a result of differences in the patient's age or the measurement location. The large size of our measurement electrode (10 mm) probably limited our ability to differentiate lesions because significant amounts of normal skin were included in each lesion measurement. A linear regression fit of data with tumor size suggests that a smaller probe or more sophisticated analysis techniques may improve differentiation. Results suggest that electrical impedance could be used to provide rapid and noninvasive differentiation of BCC from similar looking benign lesions.  相似文献   

17.
Constraints on tetrapolar tissue impedance measurements   总被引:1,自引:0,他引:1  
Impedance spectrum measurement using a tetrapolar surface probe provides a means of characterising biological tissue. However, parasitic capacitance and the presence of conductive fluid on the tissue surface impose an upper limit on both the frequency and impedance of measurements. The magnitude of these constraints has been evaluated by measurement and modelling  相似文献   

18.
A three-dimensional finite-elements model of the left and right ventricles has been developed to study the process of myocardial electrical activation. The experimentally measured velocity is known to depend on membrane processes, the cellular shape, fiber orientation, and the interaction with neighboring cells. The simulated process is, therefore, governed by the geometry and by the directional conduction velocity at each point in the myocardial volume. The geometry of the ventricles is described by ellipsoidal shape, and divided to layers and sections, each filled with "cells" of preassigned properties. It allows for taking into account the local orientation of the myocardial fibers and their distributed velocities and refractory periods. The values are Gaussly distributed around the mean, and the mean and variance differ at each section. A conduction network of Purkinje "cells" is included on the endocardial surface. The anisotropic properties are demonstrated during simulation of an abnormal cardiac cycle, when propagating is initiated at an ectopic ventricular site. Ischemia is simulated by low conduction velocities in the ischemic zone and wide dispersion of values in nearby locations; automaticity is described by restimulating "cells" in the injured area; the dangerous effects of a premature beat leading to reentry are simulated by reduction of propagation velocity in "cells" that are reactivated while they repolarize. The different activation patterns are calculated throughout the myocardium and on its surface. The generated surface activation maps are not sensitive to minute changes in location of the foci of activation within the normal conduction system. The maps show sensitivity to pathological velocities, ischemic areas, and the existence of ectopic foci.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Depending on the spectal width of the source illuminating an interferometer, measurement procedures can utilize either the whole interferogram, or only the fringe envelope, or only the fringe quick oscillations. With an ultraband spectrum source, a simplified adaptation of the methods of Fourier transform spectroscopy yields the variations of the test-fiber propagation constant over the whole wavelength-interval of the source. Chromatic dispersion can then be computed from a single interferogram. With narrower spectrum sources, only the fringe envelopes are utilized and yield measurements of mode delay, with application to chromatic and polarization mode dispersion. In this case, however, interferograms at several wavelengths are necessary. With even narrower spectrum sources, the fringe quick oscillations provide measurements of phase shifts, related to changes in the mode propagation constant, when outside perturbations are applied to the test fiber. A direct method for measuring the third-order nonlinear susceptibilities is discussed. In this case the outside perturbation is an intense pump laser field  相似文献   

20.
The purpose of this paper is to present an algorithm developed for real-time estimation of skeletal muscle ischemia, based on parameters extracted from in vivo obtained electrical impedance spectra. A custom impedance spectrometer was used to acquire data sets: complex impedance spectra measured at 27 frequencies in the range of 100 Hz-1 MHz, and tissue pH. Twenty-nine in vivo animal studies on rabbit anterior tibialis muscle were performed to gather data on the behavior of tissue impedance during ischemia. An artificial neural network (ANN) was used to quantitatively describe the relationship between the parameters of complex tissue impedance spectra and tissue ischemia via pH. The ANN was trained on 1249, and tested on 946 ischemic tissue impedance data sets. A correlation of 94.5% and a standard deviation of 0.15 pH units was achieved between the ANN estimated pH and measured tissue pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号