首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of research to examine coal conversion in solvents containing high-boiling-point components, experimental studies were carried out with model compound solvents. The dissolution of bituminous and subbituminous coals was investigated in pyrene-tetralin and 2-methylnaphthalene-tetralin mixtures. The effects of donor level, gas atmosphere, hydrogen pressure and conversion temperature were determined. At 400 °C, in the presence of hydrogen gas, pyrene-tetralin solvent mixtures show synergism in coal conversion. At donor concentrations as low at 15 wt%, the degree of conversion was almost as high as in pure tetralin. This phenomenon was not apparent in 2-methylnaphthalene-tetralin mixtures. The relative ease of reduction of pyrene and its ability to shuttle hydrogen is considered to be a principal reason for this difference in behaviour. Conversion in pure pyrene and in pyrene-tetralin mixtures at low donor concentrations increased with increasing hydrogen pressure. At 427 °C, bituminous coal conversion was higher in a 30 wt% tetralin-70 wt% pyrene mixture than in either pure compound. It was found that in the absence of coal pyrene can be hydrogenated by H-transfer from tetralin as well as by reaction with hydrogen gas. This can provide a means to increase the rate of transfer of hydrogen to the dissolving coal through the formation of a very active donor (dihydropyrene). During coal liquefaction, several pathways appear to be available for hydrogen transfer for a given coal, the optimal route being dependent upon the solvent composition and the conditions of reaction.  相似文献   

2.
Taiheiyo coal was hydrogenated in naphthalene, tetralin and decalin under 10 MPa (initial pressure) of hydrogen or nitrogen with stabilized nickel as catalyst at 400 °C for 15 min. Preasphaltene, asphaltene and oil conversions and the conversion of the solvents were measured. The hydrogen absorbed by coal from molecular hydrogen and from the donor solvent was calculated. The main reaction route appears to be the direct hydrogenation of coal by molecular hydrogen, with the side reaction via solvent by molecular hydrogen occurring only slightly, when an active catalyst such as stabilized nickel is present.  相似文献   

3.
Loy Yang brown coal treated with cobalt acetate/ammonium molybdate (Co/Mo) gave lower conversions than the very high values obtained for the same coal treated with nickel acetate/ammonium molybdate (Ni/Mo) when reacted with hydrogen at 400°C. The difference in conversions obtained between the two catalyst systems decreased with increasing time. Addition of sulphur as carbon disulphide (CS2) eliminated the difference between the Co/Mo and Ni/Mo catalyst systems, but neither system was more active than a sulphided Mo catalyst. Addition of a hydrogen donor solvent, tetralin, to a reaction in the absence of sulphur decreased conversion for the Ni/Mo catalysed system, but increased that for the Co/Mo system. The order of activity in reactions without solvent or added sulphur for the coal treated with the individual metals was CoMo < Ni. In the presence of sulphur the order was Co Ni < Mo; the addition of sulphur led to no significant improvement with Co catalysts.  相似文献   

4.
A series of coal liquefaction reactions has been carried out at 450°C to examine the adduction tendency and the coal liquefaction efficiency of 1-naphthol using a product extraction scheme which minimizes co-solvent effects. An additional set of experiments was conducted to provide information on the relative effectiveness of substituted phenols compared with the parent compound.The results indicate that 1-naphthol is a better solvent than phenanthrene, but a significantly poorer one than tetralin with regard to total conversion. Mixtures of this compound with tetralin do not promote conversion above that available from tetralin alone. In all cases, loss of naphthol by adduction to the coal liquids is a major problem.The three cresols effect higher degrees of coal conversion when used 1:1 with tetralin than does phenol, but the mixtures are not as effective as tetralin alone. The single-ring phenolic species were found to exhibit only a very moderate tendency for adduction.  相似文献   

5.
《Fuel Processing Technology》2004,85(15):1671-1687
Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 °C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature didn't have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.  相似文献   

6.
Slurries of Victorian brown coal in either tetralin (1:3) or a hydrogenated creosote oil (HKC 300) (1:3) were reacted with hydrogen in a continuous reactor system both with and without the addition of iron/tin based catalysts. The product yields and distributions from reactions using HKC 300 oil as a solvent are different from those obtained using tetralin. Under similar operating conditions, conversions are slightly lower and the asphaltene yields are higher for reactions in HKC 300 relative to those in tetralin. These differences are presumably due to the poorer hydrogen donor ability of the HKC 300. The yields of asphaltols, asphaltenes and oils for reactions in both solvent systems under a wide range of conditions are discussed as a function of overall conversion.  相似文献   

7.
John M. Charlesworth 《Fuel》1980,59(12):859-864
A study is made of the composition of the solid, liquid and gaseous fractions produced by hydrogenation of Australian Loy-Yang brown coal at temperatures ranging from 300 to 500 °C. The high oxygen content of the coal (25.5 wt%) is not found to result in a proportionally higher hydrogen consumption when compared to previously published results for a coal with approximately half the oxygen content. Oxygen is found to be removed from the coal mainly as carbon dioxide and water, most probably by decarboxylation and dehydration reactions. At temperatures up to ≈400 °C hydrogen is consumed almost solely by transference from the solvent tetralin to the coal. By this temperature both the maximum degree of conversion and the maximum oil yield are reached. The heavy oil fraction at 400 °C is composed mainly of asphaltenes and preasphaltenes. Above 400 °C hydrogen is consumed from both solvent and gas. A major part of this appears to be involved in the stabilization of decomposition products from the tetralin. The yield of pentane-soluble material is relatively constant up to 450 °C, however, at higher temperatures conversion of asphaltenes and preasphaltenes to pentane-solubles occurs in conjunction with gasification to C1–C3 hydrocarbons. Despite the fact hydrogen consumption and oxygen removal both increase with rising hydrogenation temperature, the H/C atomic ratio for the three heavy oil fractions decreases over the same range.  相似文献   

8.
Indene-tetralin and indene-decalin mixtures were used as the solvent for coal liquefaction. The effect of mixing on conversion for Yallourn coal was observed under nitrogen pressure at 400 and 440 °C. Conversion to benzene-soluble material in an indene-decalin mixture (50:50, wt) at 440 °C for 1 h was 73.0% and was only 9% lower than that in 100% tetralin. The reaction of indene with tetralin or decalin may provide the active species for coal dissolution. Simultaneously, coal radicals may be scavenged by indene.  相似文献   

9.
The decomposition of tetralin in the presence and absence of coal was investigated in batch-autoclave experiments. The effect of temperature, atmosphere and reaction time on tetralin dehydrogenation, isomerization and hydrocracking was studied. At 400 and 450 °C, coal accelerates the formation of 1 - methylindan and n-butylbenzene (as primary products) changing the tetralin into compounds with reduced hydrogen donor capacity. The 1 -methylindan and n-butylbenzene are subsequently (hydro)-cracked to smaller products. At low hydrogen pressure the conversion of tetralin into naphthalene and hydrogen becomes considerable, making uncertain the calculation of hydrogen transfer from the tetralin to the coal on the basis of tetralin/naphthalene ratios.  相似文献   

10.
The Solubilization of a bituminous coal (Ruhr District) in aromatic and the corresponding hydroaromatic compounds was compared at temperatures from 250–450°C. The solvent pair naphthalene and tetralin exhibit marked differences in solvent power as only tetralin is a ‘true’ hydrogen donor and, thus, an excellent solvent for coal. In the series of quinolines, however, the difference in solvent efficiency became significant only at temperatures ?350°C. The high solvent power of anthracene oil is explained on the basis of transferable hydrogen and the presence of N-heterocyclic compounds. Inference is drawn as to the optimum constitution of a vehicle oil.  相似文献   

11.
《Fuel》1987,66(9):1225-1229
Catalytic effects of MoCl3-LiCl-KCl and NiCl2-LiCl-KCl molten salts in hydroliquefaction of Akabira bituminous coal were studied. In the absence of solvent, both catalysts showed high coal conversion activity and high selectivity for the formation of hexane-soluble oil product. Oil yields from the catalytic runs were 3.4–3.0 times that from a non-catalytic run. Addition of hydrogen-donor tetralin considerably increased the oil yield and conversion and reduced the total hydrogen consumption. About 95 and 91 wt% daf coal was converted into pyridine-solubles and 59 and 54 wt% into oil with relatively low total hydrogen consumption (3.5 and 3.1 wt% daf coal) with the MoCl3 and NiCl2 catalysts respectively, in the presence of tetralin. Thermogravimetric analysis indicated that these catalysts enhanced the depolymerization of the coal organic matrix. Analysis of the liquefaction products suggested that the catalysts effectively catalysed the hydrocracking of polyaromatic structures contained in heavy products to hydroaromatics with relatively small ring sizes, explaining the high oil selectivity.  相似文献   

12.
《Fuel》1986,65(2):296-298
Japanese Taiheiyo coal was hydrogenated in naphthalene or tetralin under 10 MPa hydrogen using three types of catalyst of varying activities: stabilized nickel, iron dust (from steel-making converter) plus sulphur and cobalt-molybdenum on alumina support. In naphthalene, conversion (calculated from the pyridineinsoluble residue) and hydrogen consumption decreased with catalyst activity, in the order: Ni 〉 Fe 〉 Co-Mo 〉 no catalyst. In tetralin, conversion and hydrogen consumption was in the same order as in naphthalene, and the ratio of the amount of hydrogen consumed from gaseous hydrogen to that transferred from tetralin also had a similar tendency. This result supports the finding that the catalyst accelerates the direct hydrogenation of coal by gaseous hydrogen.  相似文献   

13.
在高压反应釜内,以四氢萘为供氢溶剂,Fe2O3+S为催化剂,研究了温度、反应时间、初始氢压、配比对兖州煤与秸秆共液化的影响。结果表明,提高反应温度,转化率、油产率增加;延长反应时间对转化率、油产率的影响较小;升高初始氢压,转化率、油产率刚开始增加,6 MPa以后增幅趋缓;在m(秸秆)∶m(兖州煤)=0.5∶9.5时,共液化的油产率为60.45%,比兖州煤单独液化的油产率提高了4.17%;在m(兖州煤)∶m(秸秆)=9.5∶0.5,440℃,8 MPa,90 min的条件下,共液化转化率和油产率达到最大,分别为83.58%和63.1%。  相似文献   

14.
以杨村煤为例,在490℃和2倍四氢萘溶剂的条件下,反应仅5min煤直接液化总转化率就达到84.47%,表明煤在直接液化的过程中具有初始高反应活性的特点。在纯氢气气氛下随着初始压力从1.5MPa增大到7MPa,转化率从66.38%上升为83.27%,表明压力大小对煤液化转化率有较大影响。1.5MPa下溶煤比提高到4:1以后,转化率增大到79.0%就不再增长,表明用添加过量供氢溶剂的方法弥补由于降低系统压力所带来的转化率损失不可行。  相似文献   

15.
P.-L. Chien  S.W. Weller 《Fuel》1984,63(6):878-879
The extent of coal hydroliquefaction in the presence of a good catalyst (impregnated ammonium heptamolybdate) and a hydrogen-donor solvent (tetralin) can be substantially greater in a tubing bomb than in a stirred autoclave, under nominally identical liquefaction conditions. This difference may be associated with the typically lower gas:liquid volume ratio existing under reaction conditions in a tubing bomb, relative to the ratio in an autoclave. If equilibrium is reached in the catalysed dissociation of tetralin, the extent of dissociation is less, and the hydrogen partial pressure is substantially higher, in the tubing bomb than in the autoclave. Calculations and measurements have been made for the equilibrium conditions in tetralin dissociation when coal is absent but a good catalyst (ammonium heptamolybdate dispersed on alumina) is present. For the calculation, the molar volumes and vapour pressures of tetralin and naphthalene must be known, together with the dissociation constant. Agreement was good between calculated and experimental values of dissociation in both tubing bomb and autoclave. The results permit prediction that increasing the gas:liquid volume in a tubing bomb liquefaction experiment should decrease the conversion; this effect was observed.  相似文献   

16.
The effect of hydrogen gas, a hydrogen donor solvent (tetralin) and a non-donor solvent (decane) on the pyrolysis (to 500 °C) of a bituminous coal, before and after extraction with chloroform, has been studied by in situ e.s.r. in a flowing gas cell at atmospheric pressure. It was found that hydrogen gas at 1 bar had an insignificant effect on the course of the reaction, as determined by free radical population measurements, compared with nitrogen gas. In contrast, both tetralin and decane change the free radical populations developed during pyrolysis, and the extent of the induced change varies upon chloroform extraction of the coal. These results are discussed with reference to current coal liquefaction models, and are interpreted in terms of the chemical and physical interactions of the solvent with the coal.  相似文献   

17.
Liquefaction of Banpoo coal and Mae Moh coal using supercritical toluene–tetralin mixture was performed in a semi-continuous apparatus at a temperature ranging from 370 to 490 °C and under pressures up to 12.2 MPa. The addition of tetralin to toluene increased the coal conversion and the liquid yield by the stabilization of radical fragments and inhibition of radical recombination. The effect of solvent pre-swelling treatment and catalyst impregnation on conversion and liquid yield was also examined. The combination effects of catalyst and swelling enhanced conversion and the liquid yield of sub-bituminous coal. The yield of coal liquid at the condition of 490 °C and 10 MPa with toluene–tetralin reached a maximum 45 wt.% (in daf coal) with THF as the swelling agent and ZnCl2 as the catalyst. The coal residue, after extraction, maintained most of its heating value and had a lower sulfur content.  相似文献   

18.
《Fuel》1987,66(10):1326-1329
Tritium labelled gaseous hydrogen was used to clarify the role of gaseous hydrogen in coal liquefaction. Wandoan coal was hydrogenated under 5.9 MPa (initial pressure) of 3H-labelled hydrogen and in unlabelled solvents such as tetralin, naphthalene and decalin at 400 °C and for 30 min in the presence or absence of NiMoAl2O3 catalyst. Without a catalyst, liquefaction proceeded by addition of the hydrogen from donor solvent. The NiMoAl2O3 catalyst enhanced both hydrogen transfer from gas phase to coal and hydrocracking of coal-derived liquids. With NiMoAl2O3 catalyst, liquefaction in naphthalene solvent proceeded through the hydrogen-donation cycle: naphthalene → tetralin → naphthalene. The amount of residues showed that this cycle was more effective for coal liquefaction than the direct addition of hydrogen from gas phase to coal in decalin solvent. The 3H incorporated in the coal-derived liquids from gas phase was found to increase in the following order: oil < asphaltenes < preasphaltenes < residue.  相似文献   

19.
《Fuel》1987,66(10):1321-1325
Liquefaction of Wandoan coal using a 3H labelled tetralin solvent which contains a small amount of 14C labelled naphthalene has been studied at 400 °C under an initial hydrogen pressure of 5.9 MPa, in the presence or absence of NiMoAl2O3 catalyst. The amounts of 3H and 14C transferred from the solvent to the products were measured as liquefaction progressed. The reaction pathways in the presence and absence of the catalyst were discussed and their reaction rate constants were calculated. According to the mass balances of hydrogen and 3H, in the absence of catalyst, tetralin provided coal with hydrogen atoms, and the degree of hydrogen exchange between coal and solvent was small. The catalyst decreased the hydrogen addition from solvent to coal and increased that from gas to coal.  相似文献   

20.
Lonnie W. Vernon 《Fuel》1980,59(2):102-106
Model compounds containing the types of carboncarbon bonds thought to be present in coal were pyrolyzed in the presence of tetralin and molecular hydrogen at 450 °C. The relative rates of conversion of the model structures are predictable from the bond dissociation energies of the compounds. Conversion of dibenzyl in the presence of both tetralin and molecular hydrogen or in the presence of hydrogen alone proceeds along two parallel reaction paths. Toluene is produced by a thermal cracking reaction in which the rate-controlling step is the thermal cleavage of the β-bond in dibenzyl. Benzene and ethylbenzene are produced by a hydrocracking reaction. The rate of the hydrocracking reaction is directly proportional to the hydrogen pressure. The strong bond in diphenyl is hydrocracked in a system containing both molecular hydrogen and a source of free radicals. These studies on model coal structures offer firm evidence that molecular hydrogen can participate directly in free radical reactions under coal liquefaction conditions. Under some conditions molecular hydrogen can compete with a good donor solvent to stabilize the thermally produced free radicals. Molecular hydrogen can also promote some hydrocracking reactions in coal liquefaction that do not occur to an appreciable extent in the presence of only donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号