首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用溶胶-凝胶法制备了SnO2氢敏纳米薄膜.将0.1和0.05mol/L的SnO2溶胶溶液旋涂在Au叉指电极衬底而制得.通过测量在不同温度下SnO2纳米氢敏薄膜的电阻信号来表征其氢敏特性.当温度为250℃时,试样的灵敏度较低,并且响应时间也比较长.温度为300℃时试样的灵敏度较高,响应时间也明显缩短.0.05mol/L溶胶溶液旋涂10层制备的样品在300℃氢气浓度为2.0×10-3时,灵敏度达到了178,响应时间为3.5s.同时实验还发现试样对氢气的响应时间随着氢气浓度的增加先增大再减小.  相似文献   

2.
采用化学气相沉积(CVD)方法在有金催化层的硅片上制备了SnO2纳米线。用扫描电子显微镜(SEM)及X射线衍射仪(XRD)对其形貌及结构进行了表征,分析了蒸发温度及氧气流量对SnO2相貌的影响。对比了SnO2纳米线在室温及150℃条件下的氢气敏感特性,结果表明SnO2纳米线在150℃下对氢气的灵敏度高达13.3,响应及回复时间≤5 s,表现出了良好的氢敏性能。  相似文献   

3.
设计了一种带硅岛结构的基于SnO2薄膜材料的共面式气体传感器.利用有限元工具对传感器进行了稳态热分析,分析结果表明这种传感器在33.84 mW的功耗下最高温度达到400℃,气敏薄膜上温度分布均匀.详细阐述了传感器的制作过程,过程中总共使用4块掩模版用于光刻工艺.采用溶胶-凝胶法制备了SnO2纳米薄膜作为传感器的气敏元件.对传感器进行了气敏测试,实验结果表明该传感器拥有良好的气敏性能,在300℃下对50×10-6到2 000×10-6氢气的灵敏度逐渐递增,反应时间可控制在10 s以内.  相似文献   

4.
采用二步热氧化法制备SnO2薄膜.首先把真空蒸发法制备的金属锡膜在低于锡熔点的氧气气流中氧化半小时,然后提高氧化温度至400-550℃,继续氧化2小时.通过XRD,SEM和UV-VIS光谱仪分析氧化温度对薄膜的晶体结构、表面形貌和光学性质的影响.XRD分析得知在氧化温度为400℃时能观察到不同的SnO2衍射峰.氧化温度在550℃时能观察到(11O),(101),(200)和(211)衍射峰.如果氧化温度低于550℃,衍射峰(200)很难观察到.通过SEM测量, SnO2薄膜表面致密均匀,而且表面颗粒大小与氧化温度有很大的联系.通过UV-VIS透过光谱得知随着氧化温度的升高,SnO2薄膜的光透过率也升高,光学禁带宽度也随着氧化温度的升高而升高.这种制备SnO2薄膜的工艺具有适于大面积制造,低成本,过程容易控制等很多优点.  相似文献   

5.
利用浸渍技术在多孔YSZ中制备了钙钛矿型纳米颗粒材料La0.75Sr0.25Mn0.5Co0.5O3-δ(LSCM),并以其为敏感电极,YSZ为固体电解质组成了阻抗谱型NO2传感器.使用XRD和SEM研究了传感器敏感电极的相组成和微观结构.XRD分析结果表明,经前驱体溶液浸渍和热处理后,在YSZ多孔层中生成了钙钛矿结构的LSCM.扫描电镜分析表明敏感电极颗粒粒径为50~100nm,且与YSZ多孔层结合紧密.传感器敏感性能实验结果表明,在温度范围为450~600℃,NO2浓度范围为0~1000μL/L时,传感器对NO2有良好的敏感性,频率为0.1Hz时的总阻值与NO2的浓度之间呈良好的线性关系.在气体流速为400mL/min时,获得的传感器对NO2的真实响应时间约为40s,且响应信号稳定.传感器对O2和CO2具有良好的抗干扰性能.  相似文献   

6.
肖双  李超  桂阳海  崔瑞立 《材料导报》2012,26(20):95-98
为改善WO3基敏感材料的气敏性能,先采用液相还原法制备得到WO3粉体,再通过微波辅助液相法制备了SnO2掺杂量为0.5%、1%、3%、5%、10%(质量分数,下同)的SnO2-WO3复合材料。采用XRD和SEM对材料的物相、形貌进行了表征,并研究了掺杂SnO2对WO3气敏性能的影响。结果表明,掺杂3%的SnO2可显著提高WO3对H2S的灵敏度和选择性,在工作温度为160℃时,元件对体积浓度为10×10-6 H2S的灵敏度达65,对体积浓度为50×10-6 H2S的灵敏度高达169,且灵敏度与气体浓度呈现良好的线性关系。此外,纯WO3和SnO2(3%)-WO3材料在相对湿度RH=22%~64%时有良好的抗湿性。  相似文献   

7.
以SnO2纳米粉和La2O3纳米粉为原料,采用高能球磨技术,结合正交试验设计,制备了经过高能球磨的纯SnO2纳米粉体和掺杂适量La2O3的SnO2纳米粉体。利用传统的厚膜气敏传感器制备工艺,制备了纯SnO2厚膜气敏传感器及掺杂一定量La2O3的SnO2厚膜气敏传感器。并对其本征电阻及其对乙醇、汽油、丙酮、氢气和CO等气体的敏感特性进行了测试。结果表明各因素对综合气敏性能影响的显著性水平由大到小依次为La2O3掺杂浓度〉烧结时间〉老化时间〉烧结温度。同时,通过分析还得到了最佳组合工艺。La2O3掺量为5%(质量分数),烧结时间为2h,老化时间为7d,烧结温度为650℃条件下制备的气敏元件的综合气敏性能最好,其中对1.0×10-3乙醇蒸气的灵敏度达107.2,对相同浓度的干扰气体的选择性分别为S乙醇/S汽油=11.3,S乙醇/S丙酮=9.1。  相似文献   

8.
用水热法制备了不同掺杂浓度的WO3∶Mo纳米晶粒,研究了WO3∶Mo的微结构和形貌,分析了Mo的掺杂浓度对微结构的影响,并研究了该材料对氢气的光学敏感特性。结果表明,所有样品均呈现六方相结构,掺杂浓度为2%(原子分数)样品的(200)晶面的衍射峰最强;随着掺杂量的增加,样品的带隙减小;当工作温度为200℃时,掺杂浓度为2%(原子分数)的样品对浓度5.0×10-4的氢气表现出良好的光学氢敏特性。  相似文献   

9.
采用溅射法制备的纳米结构CuO为敏感电极,钇稳定氧化锆(YSZ)为固体电解质制成了一种混合位型NO2传感器。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别表征了CuO敏感电极的相组成和微观形貌。研究了Cu的不同溅射时间对CuO敏感电极微观结构及传感器敏感性能的影响。结果表明,CuO颗粒随着Cu溅射时间的增长而增大,制成的传感器在600~700℃范围内对25~400mL/m3的NO2具有较好的敏感性能,传感器响应信号与NO2浓度的对数呈现良好的线性关系,其中60min,Cu传感器在650℃时灵敏度达41.47mV/decade,对于400mL/m3的NO2,90%的响应时间和恢复时间分别约为160、260s,体积分数0~10%的CO2对传感器的响应几乎没有影响,传感器具有较好的敏感度、重现性和稳定性。  相似文献   

10.
用SnCl4和FeCl3为原料,采用化学共沉淀法制备掺杂Fe2O3的纳米SnO2,运用差热(DSC)、X射线粉末衍射(XRD)和透射显微镜(TEM)等方法对Fe2O3和SnO2混杂纳米粉末的物相和粒径进行了分析。结果发现:与纯SnO2相比,(1)掺杂Fe2O3可以降低前驱体Sn(OH)4分解制备SnO2纳米晶的焙烧温度,从纯Sn(OH)4的分解温度345.7℃下降到341.1℃;(2)掺杂Fe2O3可以有效阻碍SnO2纳米晶的团聚和长大,前驱体在650℃焙烧时,纯SnO2晶粒在25nm,而掺杂Fe2O3的SnO2晶粒可以保持在2nm左右;(3)掺杂Fe2O3使前驱体焙烧制备SnO2的温度范围更宽,对制备小于10nm的SnO2纳米晶,纯SnO2的焙烧温度范围在400~550℃,而掺杂Fe2O3的焙烧温度范围在400~650℃;(4)SnO2/Fe2O3复合粉末在650℃以下,其晶体结构保持溶剂SnO2的四方结构,部分Fe元素置换了Sn的位置;650℃以上,复合粉末从溶剂晶格中析出Fe2O3形成两相结构。  相似文献   

11.
Ultrahigh-sensitivity SnO/sub 2/-CuO sensors were fabricated on Si(100) substrates for detection of low concentrations of hydrogen sulfide. The sensing material was spin coated over platinum electrodes with a thickness of 300 nm applying a sol-gel process. The SnO/sub 2/-based sensors doped with copper oxide were prepared by adding various amounts of Cu(NO/sub 3/)/sub 2/.3H/sub 2/O to a sol suspension. Conductivity measurements of the sensors annealed at different temperatures have been carried out in dry air and in the presence of 100 ppb to 10-ppm H/sub 2/S. The nanocrystalline SnO/sub 2/-CuO thin films showed excellent sensing characteristics upon exposure to low concentrations of H/sub 2/S below 1 ppm. The 5% CuO-doped sensor having an average grain size of 20 nm exhibits a high sensitivity of 2.15/spl times/10/sup 6/ (R/sub a//R/sub g/) for 10-ppm H/sub 2/S at a temperature of 85/spl deg/C. By raising the operating temperature to 170/spl deg/C, a high sensitivity of /spl sim/10/sup 5/ is measured and response and recovery times drop to less than 2 min and 15 s, respectively. Selectivity of the sensing material was studied toward various concentrations of CO, CH/sub 4/, H/sub 2/, and ethanol. SEM, XRD, and TEM analyses were used to investigate surface morphology and crystallinity of SnO/sub 2/ films.  相似文献   

12.
采用溶胶-凝胶法制备了纳米SnO2粉末,利用X射线衍射仪(XRD)以及原子力显微镜(AFM)对材料的晶体结构及晶粒尺寸进行了表征.采用制备的纳米SnO2作为基底材料,掺杂纳米TiO2粉末(SnO2与TiO2的物质的量之比为9:1)以及少量的Ag+(物质的量百分比为0.2%~0.4%),以此材料制成气敏元件,检测了元件的甲醛气敏性能.结果表明:该元件在工作温度为300℃时,对200×10-6的甲醛具有较好的敏感性,在不同的工作温度下,元件表现出良好的气敏选择性.理论计算表明,气体分子轨道能量的差异是元件气敏选择性的定性因素.  相似文献   

13.
One-dimensional (1-D) nanostructures such as tubes, rods, wires, and belts have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. Characterizing the mechanical properties of nanostructure is of great importance for their applications in electronics, optoelectronics, sensors, actuators. Wide-bandgap SnO2 semiconducting material (Eg = 3.6 eV at room temperature) is one of the attractive candidates for optoelectronic devices operating at room temperature, gas sensors, and transparent conducting electrodes. The synthesis and gas sensing properties of semiconducting SnO2 nanomaterials have became one of important research issues since the first synthesis of SnO2 nanobelts. Considering the important application of SnO2 in sensors, these structures are not only ideal systems for fundamental understanding at the nanoscale level, but they also have potential applications as nanoscale sensors, resonator, and transducers. The structured SnO2 nanorods have been grown on silicon substrates with Au catalytic layer by thermal evporation process over 800 degrees C. The resulting sample is characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The morphology and structural properties of SnO2 nanowires were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The mean diameter of the SnO2 nanorods grown on Au coated silicon (100) substrate is approximately 80 nm. In addition, X-ray diffraction measurements show that SnO2 nanorods have a rutile structure. The formation of SnO2 nanowires has been attributed to the vapor-liquid-solid (VLS) growth mechanisms depending on the processing conditions. We investigated the growth behavior of the SnO2 nanowires by variation of the growth conditions such as gas partial pressure and temperature.  相似文献   

14.
Selectively-grown networked SnO2 nanowires were functionalized with Pt nanodots by the radiolysis process. NO2 sensing characteristics of Pt-functionalized SnO2 nanowires were compared with those of bare SnO2 nanowires. The results demonstrate that the Pt functionalization greatly enhances the sensitivity and response time in SnO2 nanowire-based gas sensors. The enhancement is likely to be associated with the spillover effect and/or easy dissociation of NO2 into more active chemical species by the catalytic effect of Pt.  相似文献   

15.
In this paper, SnO2 nanoparticles were synthesized by the impregnation method with SnCl2 x 2H2O as the inorganic precursor and mesoporous silica MCM-41 as the hard template. The physical and chemical properties of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The SnO2 nanoparticles grew into the ordered channels of MCM-41. After removing the silica template, the products exhibited good rutile structure. The gas sensing properties of the SnO2 nanoparticles were also studied. The results indicated that these SnO2 nanoparticle sensors showed high selectivity towards ethanol.  相似文献   

16.
Chen Y  Zhu C  Shi X  Cao M  Jin H 《Nanotechnology》2008,19(20):205603
SnO(2)/α-Fe(2)O(3) hierarchical nanostructures, in which the SnO(2) nanorods grow on the side surface of α-Fe(2)O(3) nanorods as multiple rows, were synthesized via a three-step process. The diameters and lengths of the SnO(2) nanorods are 6-15?nm and about 120?nm. The growth direction of SnO(2) nanorods is [001], significantly affected by that of α-Fe(2)O(3) nanorods. The hetero-nanostructures exhibit very good selectivity to ethanol. The sensing characteristics are related to the special heterojunction structures, confirmed by high-resolution transmission electron microscopy observation. Therefore, a heterojunction barrier controlled gas sensing mechanism is realized. Our results demonstrate that the hetero-nanostructures are promising materials for fabricating sensors and other complex devices.  相似文献   

17.
Nanostructured SnO2 thin films were prepared by spray pyrolysis technique onto glass substrates with different thickness by varying quantity of precursor solution. The structural, optical and electrical properties of these films have been studied. The crystallographic structure of the films was studied by X-ray diffraction (XRD). It is found that the films are tetragonal with (110) orientation. The grain size increases with thickness. Atomic Force Microscopy (AFM) showed that the nanocrystalline nature of the films with porous nature. The grain size increased 14 to 29 nm with increase in film thickness. The studies on the optical properties show that the direct band gap value decreases from 3.75 to 3.50 eV. The temperature dependence of the electrical conductivity was studied. The activation energies of the films are calculated from the conductance temperature characteristics. The nanostructured SnO2 thin films were used as sensing layers for resistive gas sensors. The dependence of gas sensing properties on the thickness of SnO2 thin films was investigated. The gas response of the SnO2 thin films towards the H2S gas was determined at an operating temperature of 150 degrees C. The sensitivity towards H2S gas is strongly depending on surface morphology of the SnO2 thin films.  相似文献   

18.
A gas-sensing array with ten different SnO/sub 2/ sensors was fabricated on a substrate for the purpose of recognizing various kinds and quantities of indoor combustible gas leakages, such as methane, propane, butane, LPG, and carbon monoxide, within their respective threshold limit value (TLV) and lower explosion limit (LEL) range. Nano-sized sensing materials with high surface areas were prepared by coprecipitating SnCl/sub 4/ with Ca and Pt, while the sensing patterns of the SnO/sub 2/-based sensors were differentiated by utilizing different additives. The sensors in the sensor array were designed to produce a uniform thermal distribution along with a high and differentiated sensitivity and reproducibility for low concentrations below 100 ppm. Using the sensing signals of the array, an electronic nose system was then applied to classify and identify simple/mixed explosive gas leakages. A gas pattern recognizer was implemented using a neuro-fuzzy network and multi-layer neural network, including an error-back-propagation learning algorithm. Simulation and experimental results confirmed that the proposed gas recognition system was effective in identifying explosive and hazardous gas leakages. The electronic nose in conjunction with a neuro-fuzzy network was also implemented using a digital signal processor (DSP).  相似文献   

19.
The nanostructured SnO2 gas sensor with Au electrodes and Pt heater has been fabricated as one unit via screen printing process. The gas sensor was tested for CH4 sensing behavior at 350 degrees C in the concentration range of 500-10,000 ppm. Those mesoporous SnO2 sensors exhibited the similar sensoring properties in CH4 and CO detection. The fast speed of response and high sensitivity were obtained for mesoporous tin oxide sensor as compared to non-porous one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号