首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bai M  Trogisch S  Magonov S  Taub H 《Ultramicroscopy》2008,108(9):946-952
We use a prototypical alkane film (n-C(32)H(66) or C32) adsorbed on a SiO(2) surface to compare step heights measured by amplitude modulation atomic force microscopy (AM-AFM) with those measured in the contact mode. The C32 film exhibits layers in which the molecules are oriented with their long axis parallel to the SiO(2) surface followed by partial layers of perpendicular molecules. We show that step heights measured in the AM and contact modes agree in all cases except where the step is between a surface formed by a layer of parallel molecules and one of perpendicular molecules. In this case, the AM mode gives a false step height that is as much as 20% lower than that measured in the contact mode and inferred from synchrotron X-ray specular reflectivity measurements. We propose that the weaker van der Waals forces between the AFM tip and a perpendicular layer compared to a parallel layer causes this discrepancy. We show how to correct the false step height by using the approximately linear relationship observed between phase angle (cantilever oscillation relative to the drive signal) and cantilever height measured in an approach curve.  相似文献   

2.
A time-resolved method for tip' retraction at micros-scale away from dielectric surfaces has been developed. Analysis of the forces in the system comprising AFM tip, water meniscus, and polymer film suggests that an electrostatic repulsion of the tip from the surface in the double-layered (water and polymer) system, and water condensation in the tip-surface junction are the dominant factors enabling the mechanical work for tip retraction. Nanostructures of 5-80 nm height are formed in polymeric surfaces as a result. This interesting physical phenomenon could be used for nanostructures patterning in polymeric materials at enhanced aspect ratio.  相似文献   

3.
A more comprehensive modeling of atomic force microscope cantilever   总被引:1,自引:0,他引:1  
This paper focuses on the development of a complete model of an atomic force microscope (AFM) micro-cantilever beam, based on considering the effects of four major factors in modeling the cantilever. They are: rotary inertia and shear deformation of the beam and mass and rotary inertia of the tip. A method based on distributed-parameter modeling approach is proposed to solve the governing equations. The comparisons generally show a very good agreement between the present results and the results of other investigators. As expected, rotary inertia and shear deformation of the beam decrease resonance frequency especially at high ratio of cantilever thickness to its length, and it is relatively more pronounced for higher-order frequencies, than lower ones. Mass and rotary inertia of the tip have similar effects when the mass-ratio of the tip to the cantilever is high. Moreover, the influence of each of these four factors, thickness of the cantilever, density of the tip and inclination of the cantilever on the resonance frequencies has been investigated, separately. It is felt that this work might help the engineers in reducing AFM micro-cantilever design time, by providing insight into the effects of various parameters with the micro-cantilever.  相似文献   

4.
Scanning probe imaging in a shear force mode allows for the characterization of in-plane surface properties. In a standard AFM, shear force imaging can be realized by the torsional resonance mode. In order to investigate the imaging conditions on mineral surfaces, a torsional resonance mode atomic force microscope was operated in amplitude (AM) and frequency modulation (FM) feedback. Freshly cleaved chlorite was investigated, which showed brucite-like and talc-like surface areas. In constant amplitude FM mode, a slight variation in energy dissipation was observed between both surfaces. Amplitude and frequency vs. distance curves revealed that the tip was in repulsive contact with the specimen during imaging.  相似文献   

5.
In atomic force microscope (AFM) applications, the wear of the probe is undoubtedly a serious concern since it affects the integrity of the measurements. In this work, wear tests were performed using an AFM with lateral force monitoring capability with the aim to better understand the wear characteristics of diamond-coated probes. For the assessment of the probe wear, a transmission electron microscope (TEM) as well as a scanning electron microscope were utilized. The degree of the probe wear was quantified using the Archard's wear equation. The structure of the diamond-coated probe was analyzed by using the TEM and Raman spectroscopy. From the experimental results, two different wear characteristics, the gradual wear and the abrupt fracture of the diamond coating, were observed. In the case of gradual wear, the wear coefficient of the diamond-coated probe slid against a silicon nitride specimen was about 10(-5)-10(-6). It was also found that the wear rate significantly decreased with increase in the sliding distance. Raman spectroscopy analysis showed that the difference in the chemical structure of the diamond coating may induce the different wear phenomena. These results may be effectively utilized for fundamental understanding of nano-wear characteristics of AFM probes.  相似文献   

6.
Alexeev A  Loos J  Koetse MM 《Ultramicroscopy》2006,106(3):191-199
For the first time local electrical characteristics of a blend of two semiconducting polymers were studied with conductive atomic force microscopy (C-AFM). The investigated mixture is potentially interesting as the active layer in plastic photovoltaic devices. Besides conventional topography analysis of morphology and phase separation, the internal structure of the active layer was investigated by observing the current distribution with nanoscale spatial resolution. Similar to force spectroscopy, current imaging spectroscopy was performed during scanning the sample surface. Different types of current-voltage (I-V) characteristics were extracted from the array of spectroscopic data obtained from each point of the scans, and local heterogeneities of the electric characteristic were determined and discussed.  相似文献   

7.
Improving the throughput of atomic force microscope (AFM) lithography is an important success factor for employing it in nanolithography applications. The conventional motion of the AFM tube scanner is usually driven by triangular-shaped signals, but it is limited in speed due to mechanical instability of the scanner at the turning points. Here, we show that high-speed lithography is achievable using not only a piezo tube driven by a sinusoidal waveform signal but also highly sensitive noble organic resists including a photo acid generator. Cross-linked polymer nanostructures applying sinusoidal waveform driving have also shown improvements in the linearity and uniformity of line patterns.  相似文献   

8.
Since an atomic force microscope is used to measure sub-nanometer level precision, it is sensitive to external vibration. If the vibration can be measured by using an additional sensor, we can obtain the vibration-free signal by subtracting the vibration signal from the signal containing the vibration. To achieve a highly effective vibration rejection ratio, it is important to decide where to locate the additional sensor. This is because the vibration measured at the sensing position should have the same phase as that of the vibration in the signal. Vibration reduction control using this electrical sensing method is verified through time domain analysis and topology images of a standard grid sample.  相似文献   

9.
A new model for the flexural vibration of an atomic force microscope cantilever is proposed, and a closed-form expression is derived. The effects of angle, damping and tip moment of inertia on the resonant frequency were analysed. Because the tip is not exactly located at one end of the cantilever, the cantilever is modelled as two beams. The results show that the frequency first increases with increase in angle and then decreases to a constant value for high values of the angle. Moreover, the damping is increased at lower contact positions. The tip moment of inertia is also sensitive to the resonant frequency at small values for the odd modes and large values for the even modes.  相似文献   

10.
原子力显微镜测力臂弹性系数的准确性直接影响其测量精度,是仪器标定的一个重要指标。分别运用理论计算方法、动态计算方法和静态计算方法计算原子力显微镜测力臂弹性系数。以矩形测力臂为例,对其进行灵敏度分析,找出影响测力臂弹性系数的参数。分别选取矩形测力臂原始参数值及参数上下极限值,构成3组实验数据。利用上述3种计算方法,分别计算出3组不同参数值的矩形测力臂的弹性系数,然后对这3种计算方法计算所得的弹性系数进行分析并和生产商给出的名义值进行比较,所得结果为原子力显微镜矩形测力臂弹性系数的精确计算提供参考。  相似文献   

11.
Lateral vibration of the tip in atomic force microscopy was mapped at the torsional resonance of the cantilever by attaching a shear piezo element at the base of the cantilever or under the sample. Fixed frequency excitation and self-excitation of torsional motion were implemented. The lateral vibration utilized as measured by an optical lever was in the order of 10 pm to 3 nm, and its frequency approximately 450 kHz for a contact-mode silicon nitride cantilever. The amplitude and phase of the torsional motion of the cantilever was measured by a lock-in-amplifier or a rectifier and plotted in x and y as the sample was raster scanned. The imaging technique gave contrast between graphite terraces, self-assembled monolayer domains, silicon and silicon dioxide, graphite and mica. Changing contrast was observed as silicon islands oxidized in atmosphere, showing that the imaging technique can detect change in lateral tip mobility due to changes occurring near the surface. Torsional self-excitation showed nanometric features of self-assembled monolayer islands due to different lateral dissipation. Dependence of torsional resonance frequency on excitation amplitude, and contrast change due to driving frequency around resonance were observed.  相似文献   

12.
The present paper shows that atomic force microscopy (AFM) imaging of friction force and phase lag in ambient air can be used to characterize the chemical contrast induced by electron beam (EB) irradiation on polyethylene glycol oxide (PEO) surface. Time-of-flight secondary emission mass spectroscopy measurements showed that the EB irradiation generates chemical contrast on PEO surface by decreasing the ether bond density. The AFM measurements showed smaller phase lag and lower friction and adhesive forces on the EB irradiated PEO surface, as compared to the non-irradiated PEO surface. While the chemical contrast in friction force had a linear dependence on the EB irradiation dose, the dependence of the chemical contrast in the phase lag was strongly non-linear. As the friction and adhesive forces depended on the AFM probe hydrophilicity and air humidity, the contrast in friction and adhesive forces is ascribed to different capillary condensation of ambient water vapour at the AFM tip contact with the EB irradiated and non-irradiated PEO surfaces, respectively.  相似文献   

13.
We show that an infrared spectromicroscopy method based on a photo-thermal effect, is able to localize single viruses as well when they are isolated and when they are located inside the bacteria they have infected. In this latter case, although the topography performed by an AFM cannot image the viruses, the AFMIR is able to do so. In addition, we are able to determine different stages of the bacteria infection.  相似文献   

14.
15.
The air–lung interface is covered by a molecular film of pulmonary surfactant (PS). The major function of the film is to reduce the surface tension of the lung's air–liquid interface, providing stability to the alveolar structure and reducing the work of breathing. Earlier we have shown that function of bovine lipid extract surfactant (BLES) is related to the specific molecular architecture of surfactant films. Defined molecular arrangement of the lipids and proteins of the surfactant film also give rise to a local highly variable electrical surface potential of the interface. In this work we investigated a simple model of artificial lung surfactant consisting of DPPC, eggPG, and surfactant protein C (SP-C).  相似文献   

16.
Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5?% or less, but with precision limited to about 15?%, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14?%. In constant force mode using a relatively stiff cantilever, we observed an ≈?4?% systematic error per μN of applied load for loads ≤?1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.  相似文献   

17.
Vibration is a key factor to be considered when designing the mechanical components of a high precision and high speed atomic force microscope (AFM). It is required to design the mechanical components so that they have resonant frequencies higher than the external and internal vibration frequencies. In this work, the mechanical vibration in a conventional AFM system is analyzed by considering its mechanical components, and a vibration reduction is then achieved by reconfiguring the mechanical components. To analyze the mechanical vibration, a schematic of the lumped model of the AFM system is derived and the vibrational influences of the AFM components are experimentally examined. Based on this vibration analysis, a reconfigured AFM system is proposed and its effects are compared to a conventional system through a series of simulations and experiments.  相似文献   

18.
Cho SM  Nam HJ  Park BH  Jeon DY 《Ultramicroscopy》2008,108(10):1081-1085
The domain switching properties of the ferroelectric Pb(Zr(0.2)Ti(0.8))O(3) (PZT) thin films with two types of crystallographic orientations were investigated by electrostatic force microscopy (EFM). The crystallographic orientations of the PZT thin films were random on the (111)Pt/MgO(100) and c-axis preferred on the (100)Pt/MgO(100), respectively. When dc bias was applied to the films for writing in micro-scale area, electrostatic force images showed that the domain switching was hard in the PZT thin films with random orientation, while the pattern could clearly be written in the PZT films with c-axis orientation. The differences in the domain switching properties of each PZT thin film were investigated in the crystallographic orientations point of view, and the domain switching dynamics were also measured by investigating the nano-sized dot switching behavior with respect to the width of the applied voltage pulse.  相似文献   

19.
Zhang T  Chao Y  Shih K  Li XY  Fang HH 《Ultramicroscopy》2011,111(2):131-139
To determine the lateral detachment force for individual bacterial cells, a quantitative method using the contact mode of an atomic force microscope (AFM) was developed in this study. Three key factors for the proposed method, i.e. scan size, scan rate and cantilever choice, were evaluated and optimized. The scan size of 40×40 μm2 was optimal for capturing sufficient number of adhered cells in a microscopic field and provide adequate information for cell identification and detachment force measurement. The scan rate affected the measurement results significantly, and was optimized at 40 μm/s considering both force measurement accuracy and experimental efficiency. The hardness of applied cantilevers also influenced force determination. The proposed protocol for cantilever selection is to use those with the lowest spring constant first and then step up to a harder cantilever until all cells are detached. The lateral detachment force of Escherichia coli cells on polished stainless steel and a glass-slide coated with poly-l-lysine were measured as 0.763±0.167 and 0.639±0.136 nN, respectively. The results showed that the established method had good repeatability and sensitivity to various bacteria/substrata combinations. The detachment force quantified by AFM (0.639±0.136 nN) was comparable to that measured by the centrifugation method (1.12 nN).  相似文献   

20.
利用原子力显微镜(AFM)硅悬臂器件具有多阶谐振模态的特性,提出了基于硅悬臂高阶谐振特性构建动态AFM来实现快速扫描的方法,并研制了可工作于一阶模态和高阶模态的AFM。介绍了高阶谐振AFM系统的基本结构和工作原理,从理论上证明了利用硅悬臂梁高阶谐振特性实现快速扫描的可行性。以自制的AFM为研究对象,分析了影响动态AFM扫描速度的主要因素,对系统各模块的响应时间进行了分析、测试,并通过实验证明了AFM在二阶谐振模态下的稳定时间明显小于一阶谐振模态下的稳定时间。最后,分别用一阶、二阶谐振模态对光栅试样在同一区域的表面形貌进行了扫描测试,测试数据表明:在相同条件下,AFM的扫描速度在二阶谐振模态下约是一阶模态下的3.3倍。理论分析和实验结果证明了利用高阶谐振探针提高AFM扫描速度的可行性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号