首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了制备结构和性能满足骨组织工程支架要求的聚己内酯(PCL)多孔支架材料,采用浸没凝胶相分离法,以冰醋酸和丙酮为混合溶剂,水为凝固剂,壳聚糖(CS)颗粒为添加剂制得一系列PCL多孔支架。探讨了溶剂组成、PCL浓度、CS添加量对PCL多孔支架结构和性能的影响。结果表明:添加CS颗粒有利于形成多孔三维支架,随着CS含量的增加,孔隙率略微下降,抗压强度提高。随着PCL质量分数的增加,孔隙率明显下降,但抗压强度增大。当溶剂组成中丙酮含量为50 wt%~60 wt%,PCL质量分数不高于10 wt%时,通过改变CS用量,可制得孔隙率和力学性能满足骨组织工程要求的相互贯通的三维多孔支架材料。  相似文献   

2.
The aim of this study was to fabricate porous scaffolds of zein/poly(ε-caprolactone) (PCL) biocomposite by solvent casting–particulate leaching method using sodium chloride particles as the porogen. Porous biocomposite scaffolds with porosity around 70% and well-interconnected network were obtained. The incorporation of zein into PCL led to the improvement of hydrophilicity as indicated by the results of water contact angle measurement. After immersion in phosphate buffered saline (PBS) in vitro for 28 days, it was observed that the degradation rate of the zein/PCL biocomposite scaffold was faster than the PCL scaffold and that the rate could be tailored by adjusting the amount of zein in the composite. The results demonstrate the potential of the zein/PCL biocomposite scaffolds to be used in tissue engineering strategies to regenerate bone defects.  相似文献   

3.
In this study, poly(ε-caprolactone) (PCL)/poly(ethylene oxide) (PEO) (50:50 wt%) immiscible blend was used as a model system to investigate the feasibility of a novel solventless fabrication approach that combines cryomilling, compression molding and porogen leaching techniques to prepare interconnected porous scaffolds for tissue engineering. PCL was cryomilled with PEO to form blend powders. Compression molding was used to consolidate and anneal the cryomilled powders. Selective dissolution of the PEO with water resulted in interconnected porous scaffolds. Sodium chloride salt (NaCl) was subsequently added to cryomilled powder to increase the porosity of scaffolds. The prepared scaffolds had homogeneous pore structures, a porosity of ~50% which was increased by mixing salt with the blend (~70% for 60% wt% NaCl), and a compressive modulus and strength (ε = 10%) of 60 and 2.8 MPa, respectively. The results of the study confirm that this novel approach offers a viable alternative to fabricate scaffolds.  相似文献   

4.
Polycaprolactone/chitosan (PCL/CS) porous composite scaffolds were prepared by solution phase separation method, and the scaffolds were further enhanced by filling with nano-hydroxyapatite/polyvinyl alcohol (n-HA/PVA) composite slurry to prepare n-HA-PVA/PCL-CS composite porous scaffolds through slurry centrifugal filling technique. The morphology, microstructure, component, porosity and mechanical property of the scaffolds were characterized using scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscope, elemental analyzer and material test machine. The results show that PCL/CS scaffolds have mutual transfixion porous structure just like honeycombs. The porosity of the scaffolds can achieve 60-80%. As the content of CS increases, the porosity increases while the compressive strength decreases. After filled with HA/PVA composite slurry, the porosity of n-HA/PCL-CS composite scaffolds decreases, but still greater than 60%, while the compression modulus can increase to 25.7 MPa.  相似文献   

5.
采用选择性激光烧结技术构建多孔聚己内酯(PCL)骨支架,用原位合成的方法制得壳聚糖/羟基磷灰石(CS/HA)悬浮液,并采用真空浸泡、低速离心和冷冻凝胶的方法使CS/HA黏附在PCL支架的表面,以改善骨支架的生物相容性和细胞增殖活性。通过X射线衍射(XRD)和扫描电子显微镜(SEM)观测复合支架的物相和形貌,测量支架的压缩强度和杨氏模量,测量支架表面的水接触角,并通过体外细胞实验研究复合支架的生物学性能。实验结果表明,原位合成的方法制得了羟基磷灰石(HA);CS/HA凝胶与PCL骨支架表面黏附良好;CS/HA改善了PCL支架表面的亲水性,提升了骨支架的生物相容性和细胞增殖活性。  相似文献   

6.
具有复杂形状的聚ε-己内酯多孔支架的模压制备方法   总被引:1,自引:0,他引:1  
通过聚ε-己内酯(PCL)支架的制备,尝试了一种制备具有复杂形状的组织工程三雏多孔支架的新方法一改进的模压/粒子浸出法,并对所得外耳状多孔支架的形态、孔结构和孔隙率进行了表征。模压针对聚ε-己内酯熔体和大量盐粒的混合物进行。该方法所得支架孔隙率高达90%以上。可望用于各种不同复杂形状的三雏多孔支架的制备。  相似文献   

7.
Chitosan-g-polycaprolactone copolymer (CPC) with a relatively low degree of substitution of polycaprolactone (PCL) and a PCL content of around 50 wt.% was first synthesized. CPC was further used to fabricate porous scaffolds with a novel processing method. Basing on a layer-by-layer assembly technique and choosing salt as porogen, these produced scaffolds showed interconnected porous microarchitectures with gradually increasing pore size and porosity along the longitudinal direction. By selecting an appropriate solvent and optimizing processing conditions, the resulting scaffolds would have various pore sizes and porosities which changed from ~ 85 to ~ 390 μm and from ~ 66% to ~ 91%, respectively.  相似文献   

8.
具有良好贯通性的颗粒造孔支架的制备及表征   总被引:1,自引:0,他引:1  
支架孔隙贯通性的研究一直是多孔生物陶瓷的研究重点之一.采用石蜡球作为造孔剂, 在常规的颗粒造孔法制备多孔陶瓷支架的基础上,通过二甲苯处理以便在石蜡球间形成桥联结构, 以扩大颗粒间的接触面积,从而提高多孔陶瓷支架的孔隙贯通性. 借助扫描电镜(SEM)观察陶瓷支架的多孔结构,评价二甲苯处理石蜡球对陶瓷支架孔隙贯通性的改善效果; 采用密度法测定了陶瓷支架的孔隙率并计算其收缩率,并用成骨细胞评价陶瓷支架的细胞相容性. 结果表明,通过二甲苯的处理, 不仅改善了陶瓷支架孔隙的贯通性,而且提高了其孔隙率, 但孔隙率对陶瓷支架的收缩率无明显影响.细胞培养实验显示成骨细胞可进入多孔陶瓷支架内部, 并在材料表面正常生长,贯通性好的多孔陶瓷支架可为成骨细胞生长提供更充分的空间.  相似文献   

9.
Rigid thermoplastic polyurethane (TPU)/hydroxyapatite (HA) scaffolds were prepared with micro HA (mHA) and nano HA (nHA) particles, respectively, via the thermally induced phase separation method. The effects of solvent and co-solvent, addition of sodium chloride (NaCl) porogen, and HA particle size were studied together with the morphology, compressive properties, and mineralization behavior of the scaffolds. Depending on the solvent, co-solvent, or porogen used, different porous structures were produced. In particular, a ladder-like morphology was obtained when dioxane (Di) was used as the solvent, whereas an interconnected porous structure was obtained by using dioxane and deionized water (DiW) as co-solvents. Rectangular pores with interconnected channels on the pore walls were achieved by using NaCl crystals as porogens. The TPU/nHA scaffolds showed stronger compressive properties than the TPU/mHA scaffolds and the pure TPU scaffolds. The scaffolds prepared using dioxane and water as co-solvents exhibit the greatest compressive modulus. Furthermore, TPU scaffolds with nHA particles had the ability to form bone apatite when soaked in simulated body fluid (SBF). After being soaked in SBF for 3 weeks, the weight percentage of formed apatite in the TPU/nHA-DiW scaffold was 9.2 %wt of the initial TPU content. Preliminary cytotoxicity tests were conducted using NIH 3T3 fibroblast cells. The high survival rate of these cells and the mineralization behavior suggest biocompatibility and high potential of these composites being used in bone tissue engineering applications.  相似文献   

10.
壳聚糖/聚己内酯-聚乳酸多孔支架制备和表征   总被引:1,自引:0,他引:1       下载免费PDF全文
为调控骨组织工程支架的力学性能和降解性能,采用相分离方法,以冰醋酸-水为共溶剂配制聚合物溶液,以NaOH溶液为凝固剂,以CS为添加剂制备壳聚糖(CS)/聚己内酯(PCL)-聚乳酸(PLA)三维多孔支架,研究了聚合物质量比对支架结构、形貌、孔隙率、力学性能和降解性能的影响。实验结果表明,CS和基体存在相互作用,CS有利于形成三维相互贯通的微孔结构,但CS的存在会使基体中各组分的熔点降低。随着PCL和PLA用量比例的改变,孔径范围和微孔形貌发生了一系列的变化。当PCL∶PLA为2∶4和3∶3时,所制备的支架孔隙率均大于90%,当进一步增大PCL质量比时,孔隙率迅速下降。抗压测试表明,所制备的支架弹性模量为0.8~8.0 MPa。降解性能分析表明,4周以后,当PCL∶PLA为3∶3时,质量损失率最大,达到5.94%。该分析表明采用相分离法,通过调节PCL和PLA的质量比可制备形貌、孔隙率、降解速率和力学性能满足要求的三维多孔支架材料,有望应用在软骨组织工程上。  相似文献   

11.
This paper reports polymeric scaffolds with spherical internal macropores and relatively large external dimension. Paraffin spheres with the diameter of several hundred microns were prepared by a suspension technique. Particulate leaching technique based on this kind of spherical porogens was combined with room-temperature compression molding technique to fabricate biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) porous scaffolds potentially for tissue engineering or in situ tissue induction. The scaffolds exhibited ordered macropores with good pore interconnectivity. The porosity ranged from 80 to 97% adjusted simply by varying porogen content. The foams with porosity around 90% have compressive modulus over 3 MPa and compressive strength over 0.2 MPa. As preliminary cell experiments with 3T3 fibroblasts cultured on the porous scaffolds indicate, the processing procedure of the scaffolds has not brought with problem in cytotoxicity.  相似文献   

12.
为了仿生莲藕内部的贯穿大孔结构,以生物相容性好的壳聚糖(CS)作为基质材料,利用冰粒致孔、石蜡模具和冰模具成型3种成型方法制备了分级多孔CS支架材料,然后与力学强度较高的聚乳酸(PLLA)复合,制备网络互穿CS/PLLA复合支架。通过SEM、压缩强度测试和兔股骨髁骨缺损模型对CS/PLLA复合材料的形貌、力学强度和骨修复性能进行了表征。结果表明:利用冰模具制备的CS/PLLA复合支架能可控、批量制备,具有微米-毫米分级多孔结构,大孔孔径约为2mm,内部均匀分布着孔径约为60μm的贯穿微孔,并在微孔内形成密集的PLLA絮状网络结构。干态复合材料的压缩强度和模量分别比纯CS支架的提高了6倍和15倍。体内植入实验结果表明,CS/PLLA复合材料能够促进骨缺损的愈合,并随着新骨的形成,复合材料逐渐被降解吸收。  相似文献   

13.
Titania/chitosan composite scaffolds were prepared through a freeze-drying technique. The composite scaffolds were highly porous with the average pore size of 120–300 μm, and the titania (TiO2) powders were uniformly dispersed on the surface of the pore walls. The compressive strength of the composite scaffolds was significantly improved compared to that of pure chitosan scaffolds. Composite scaffold with 0.3 of TiO2/chitosan weight ratio showed the maximum compressive strength of 159.7 ± 21 kPa. Hepatic immortal cell line HL-7702 was used as seeding cells on the scaffolds, and after different culture periods, cell attachment and function was analyzed. HL-7702 cells attached on the pore walls of the scaffolds with the spheroid shape after 1 day of culture, but more cell aggregations formed within the TiO2/chitosan composite scaffolds as compared to pure chitosan scaffolds. Liver-specific functions, albumin secretion and urea synthesis were detected using a spectrometric method. The results showed that albumin secretion and urea synthesis rate of HL-7702 cells slightly decreased with the culture time, and there was no significant difference between composite scaffolds and pure chitosan scaffolds. In conclusion, the TiO2/chitosan composite scaffolds possessed an improved mechanical strength compared to pure chitosan scaffolds and supported the attachment and functional expression of hepatocyte, implying their potential application in liver tissue engineering.  相似文献   

14.
Three-dimensional printer (3DP) (Z-Corp) is a solid freeform fabrication system capable of generating sub-millimeter physical features required for tissue engineering scaffolds. By using plaster composite materials, 3DP can fabricate a universal porogen which can be injected with a wide range of high melting temperature biomaterials. Here we report results toward the manufacture of either pure polycaprolactone (PCL) or homogeneous composites of 90/10 or 80/20 (w/w) PCL/beta-tricalcium phosphate (β-TCP) by injection molding into plaster composite porogens fabricated by 3DP. The resolution of printed plaster porogens and produced scaffolds was studied by scanning electron microscopy. Cytotoxicity test on scaffold extracts and biocompatibility test on the scaffolds as a matrix supporting murine osteoblast (7F2) and endothelial hybridoma (EAhy 926) cells growth for up to 4?days showed that the porogens removal process had only negligible effects on cell proliferation. The biodegradation tests of pure PCL and PCL/β-TCP composites were performed in DMEM with 10?% (v/v) FBS for up to 6?weeks. The PCL/β-TCP composites show faster degradation rate than that of pure PCL due to the addition of β-TCP, and the strength of 80/20 PCL/β-TCP composite is still suitable for human cancellous bone healing support after 6?weeks degradation. Combining precisely controlled porogen fabrication structure, good biocompatibility, and suitable mechanical properties after biodegradation, PCL/β-TCP scaffolds fabricated by 3DP porogen method provide essential capability for bone tissue engineering.  相似文献   

15.
One of the most widely used fabrication methods of three dimensional porous scaffolds involves compression moulding of a polymer salt mixture, followed by salt leaching. However, the scaffolds prepared by this technique have typically limited interconnectivity. In this study, besides salt particles, an additional polymeric porogen, poly(ethylene oxide), PEO, was added to poly(L-lactic acid), PLLA, to enhance the interconnectivity of the scaffolds. Compression moulded specimens were quenched and put into water, where PEO crystallized and phase separated. Following the leaching of PEO fraction, the permeability and interconnectivity among the macropores formed by salt leaching could be observed. The porosities obtained in the prepared scaffolds were between 76 to 86%. Moreover, the highest porosity of 86% was obtained with minimum fraction of total porogen. The water absorption of the porous scaffolds prepared with PEO could vary between 280 to 450% while water uptake of pure PLLA scaffolds was about 93%. The increase of interconnectivity induced by compounding PLLA with PEO could also be obtained in porous PLLA/starch blends and PLLA/hydroxyapatite composites demonstrating the versatility and wide applicability of this preparation protocol. The simplicity of this organic solvent free preparation procedure of three-dimensional porous scaffolds with high interconnectivity and high surface area to volume ratio holds a promise for several tissue engineering applications.  相似文献   

16.
Porous magnesium has the potential to be used as degradable bone scaffolds. In this study, porous magnesium scaffolds were fabricated through powder metallurgy route utilizing spherical naphthalene particle as porogen. Porogen was removed at 120?°C for 24?h followed by sintering at 550?°C for 2?h in argon atmosphere. Micro-computed tomography (micro CT) results indicated that scaffolds have interconnected porous structure with an equivalent pore diameter of nearly 60?µm. Compressive strength of the scaffolds was found in the range of 24?±?4.54?MPa to 184?±?9.9?MPa and decreased with increasing porogen content. In vitro degradation study in phosphate buffered saline (PBS) showed that scaffold degradation behavior was governed by its porosity content. Our results indicate that modulating the porogen content we can tailor the mechanical and degradation behavior of the Mg scaffolds to the application need.  相似文献   

17.
Tissue engineering requires the development of three-dimensional water-stable scaffolds. In this study, silk fibroin/chitosan (SFCS) scaffold was successfully prepared by freeze-drying method. The scaffold is water-stable, only swelling to a limited extent depending on its composition. Fourier Transform Infrared (FTIR) spectra and X-Ray diffraction curves confirmed the different structure of SFCS scaffolds from both chitosan and silk fibroin. The homogeneous porous structure, together with nano-scale compatibility of the two naturally derived polymers, gives rise to the controllable mechanical properties of SFCS scaffolds. By varying the composition, both the compressive modulus and compressive strength of SFCS scaffolds can be controlled. The porosity of SFCS scaffolds is above 95% when the total concentration of silk fibroin and chitosan is below 6 wt%. The pore sizes of the SFCS scaffolds range from 100 μm to 150 μm, which can be regulated by changing the total concentration. MTT assay showed that SFCS scaffolds can promote the proliferation of HepG2 cells (human hepatoma cell line) significantly. All these results make SFCS scaffold a suitable candidate for tissue engineering.  相似文献   

18.
采用溶液浇铸法,以二氯甲烷作为溶剂,制备了聚己内酯/羟基磷灰石晶须(PCL/HAw)复合多孔支架,并进行了正交试验,综合分析了不同配方量的PCL和HAw对材料机械性能的影响。结果表明,可通过控制PCL的量来控制支架的力学性能,通过加入HAw提高支架的亲水性能,支架的接触角实验显示其接触角为81°;PCL的结晶度会随着HAw含量的增加而增强,复合多孔支架的抗拉强度为1.43M~9.21MPa,并在PCL与HAw的质量比为100∶3时达到最大;细胞毒性实验显示,PCL/HAw复合多孔支架细胞毒性为0,满足生物材料使用要求。  相似文献   

19.
The purpose of this study is to improve hydroxyapatite (HA) porous scaffolds via coating with biological polymer-HA hybrids for use as wound healing and tissue regeneration. Highly porous HA scaffolds, fabricated by a polyurethane foam reticulate method, were coated with hybrid coating solution, consisting of poly(-caprolactone) (PCL), HA powders, and the antibiotic Vancomycin. The PCL to HA ratio was fixed at 1.5 and the drug amounts were varied [drug/(PCL + HA) = 0.02 and 0.04]. For the purpose of comparison, bare HA scaffold without the hybrid coating layer was also loaded with Vancomycin via an immersion-adsorption method. The hybrid coating structure and morphology were observed with Fourier transformed infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The effects of the hybrid coating on the compressive mechanical properties and the in vitro drug release of the scaffolds were investigated in comparison with bare HA scaffold. The PCL-HA hybrid coating altered the scaffold pore structure slightly, resulting in thicker stems and reduced porosity. With the hybrid coating, the HA scaffold responded to an applied compressive stress more effectively without showing a brittle failure. This was attributed to the shielding and covering of the framework surface by the coating layer. The encapsulated drugs within the coated scaffold was released in a highly sustained manner as compared to the rapid release of drugs directly adsorbed on the pure HA scaffold. These findings suggest that the coated HA scaffolds expand their applicability in hard tissue regeneration and wound healing substitutes delivering bioactive molecules.  相似文献   

20.
Nano-sized hydroxyapatite (nanoHA) reinforced composites, mimicking natural bone, were produced. Examination by transmission electron microscopy revealed that the nanoHA particles had a rod-like morphology, 20–30 nm in width and 50–80 nm in length. The phase composition of hydroxyapatite was confirmed by X-ray diffraction. The nanoHA particles were incorporated into poly-2-hydroxyethylmethacrylate (PHEMA)/polycaprolactone (PCL) matrix to make new nanocomposites: nanoHA-PHEMA/PCL. Porous nanocomposite scaffolds were then produced using a porogen leaching method. The interconnectivity of the porous structure of the scaffolds was revealed by non-destructive X-ray microtomography. Porosity of 84% was achieved and pore sizes were approximately around 300–400 μm. An in vitro study found that the nanocomposites were bioactive as indicated by the formation of a bone-like apatite layer after immersion in simulated body fluid. Furthermore, the nanocomposites were able to support the growth and proliferation of primary human osteoblast (HOB) cells. HOB cells developed a well organized actin cytoskeletal protein on the nanocomposite surface. The results demonstrate the potential of the nanocomposite scaffolds for tissue engineering applications for bone repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号