首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, Chinese-style sausage was subjected to three different air-blast drying conditions commonly employed during the manufacturing process. The fate of Escherichia coli O157: H7 during the drying period was determined and compared. The effect of curing agents on the survival of E coli O157: H7 was also identified. Results showed that populations of E coli O157: H7 decreased ca 1.51 Log CFU g-1 in sausage containing curing agents after a 6-h drying period at 50°C. However, the number of viable cells of E coli O157: H7 increased slightly in sausage without curing agents. When subjected to air-blast drying at 55°C for 6 h or at 55°C for 2·5 h and then 60°C for 3·5 h, a reduction in the number of viable cells of E coli O157: H7 was observed in sausage with or without curing agents. The reduction was more significant in sausage containing curing agents than in those without curing agents. No viable E coli O157: H7 was detected after 6 h of drying in samples containing curing agents, while the control samples still contained a viable E coli O157: H7 population of ca 2·65–4·36 Log CFU g-1. After drying the sausage at 55°C for 4 h, inactivation of E coli O157: H7 increased in the presence of 30·00 g kg-1 sodium chloride or 1·50 g kg-1 sodium sorbate. On the other hand, the presence of 0·07–0·15 g kg-1 sodium nitrite did not increase the inactivation of E coli O157: H7 compared to that in the control. © 1997 SCI.  相似文献   

2.
The effect of potassium sorbate (0–2 g litre−1) and sodium nitrite (0–1 g litre−1) on the growth of four strains of Escherichia coli O157: H7 in tryptic soya broth at various pH levels (pH 4·0–7·0 for sorbate, pH 5·0–8·0 for nitrite) were determined at 37°C and 4°C. Among the pH levels tested, sorbate and nitrite exhibited the highest antimicrobial activity at pH 4·0 and 5·0, respectively. At pH 5·0 and 37°C, the presence of 500 mg litre−1 sorbate or 200 mg litre−1 nitrite completely inhibited the growth of E coli O157: H7. While at higher pH levels, 2 g litre−1 sorbate or 1 g litre−1, nitrite, the highest concentration tested, did not show significant antimicrobial action against the test organisms. At 4°C and pH 5·0, the inoculated test organisms did not showed any significant growth in preservative-free control media. Different degree of inactivation and injury was observed when E coli O157: H7 strain 933 was stored in TSB (pH 5·0) containing 1 g litre−1 sorbate or nitrite at 37°C. At 4°C, inactivation and injury of E coli O157: H7 cells was not observed in the medium containing sorbate or nitrite throughout the 24 h experimental period.  相似文献   

3.
《Food microbiology》2001,18(5):565-570
Myzithra, Anthotyros and Manouri whey cheeses were inoculated the day after production withEscherichia coli O157 : H7 at concentrations of approx. 1·8×106cfu g−1, and stored at 2 and 12°C for 30 and 20 days, respectively. The pH of the whey cheeses decreased from an initial value of approx. 6·20 to 5·83 or 5·60 (Myzithra) 5·75 or 5·20 (Anthotyros) and 5·80 or 5·30 (Manouri) by the end of the corresponding storage periods at 2 and 12°C, respectively. Escherichia coli O157 : H7 populations in the whey cheeses at the end of the 12°C storage period, had grown with an increase of approx. 1·3 log10cfu g−1. E. coli O157 : H7 populations in whey cheeses at the end of the 2°C storage period did not grow and decreased, with an approx. 2·5 log10cfu g−1reduction. Results showed that E. coli O157 : H7 can grow at 12°C and survive at 2°C storage in Myzithra, Anthotyros and Manouri whey cheeses, and therefore post-manufacturing contamination with this pathogen must be avoided by employing hygienic control programmes such as HACCP.  相似文献   

4.
《Food microbiology》1999,16(3):317-324
Acid-adapted bacterial cells are known to have enhanced tolerance to various secondary stresses. However, a comparison of heat tolerance of acid-adapted and acid-shocked cells of Escherichia coli O157:H7 has not been reported. D - and z -values of acid-adapted, acid-shocked, and control cells of an unusually heat-resistant strain (E0139) of E. coli O157:H7, as well as two other strains of E. coli O157:H7, were determined based upon the number of cells surviving heat treatment at 52, 54 or 56°C in tryptic soy broth (pH 7·2) for 0, 10, 20 or 30 min. The unusual heat tolerance of E. coli O157:H7 strain E0139 was confirmed. D -values for cells from 24-h cultures were 100·2, 28·3, and 6·1 min at 52, 54 and 56°C, respectively, with a z -value of 3·3°C. The highest D -values of other E. coli O157:H7 strains were 13·6 and 9·2 min at 52 and 54°C, respectively, whereas highest D -values of non-O157:H7 strains were 78·3 and 29·7 min at 52 and 54°C. D -values of acid-adapted cells were significantly higher than those of unadapted and acid-shocked cells at all temperatures tested. In a previous study, we observed that both acid-adapted cells and acid-shocked cells of strain E0139 had enhanced acid tolerance. This suggests that different mechanisms protect acid-adapted and acid-shocked cells against subsequent exposure to heat or an acidic environment. The two types of cells should be considered separately when evaluating survival and growth characteristics upon subsequent exposure to different secondary stress conditions.  相似文献   

5.
《Food microbiology》2000,17(5):521-533
The effects of washing and chlorine dioxide (ClO2) gas treatment on survivability and attachment of Escherichia coli O157: H7 C7927 to uninjured and injured green pepper surfaces were investigated using scanning electron microscopy and colony enumeration methods. Escherichia coli O157: H7 preferentially attached to coarse and porous intact surfaces and injured surfaces. The bacterial attachment to injured green pepper surfaces may be determined mainly by the hydrophilic properties of the injured surfaces and might not be assisted by the exocellular polymers of the bacteria. Injuries to the wax layer, the cuticle and underlying tissues increased bacterial adhesion, growth, and resistance to washing and disinfecting treatments. No significant growth of E. coli O157: H7 was found on uninjured surfaces after inoculation and incubation for 24 h at 37°C, whereas significant growth and multiplication were found on injured surfaces (P<0·05). ClO2gas treatment was more effective as a disinfecting method than water washing. Using a membrane-plating method for resuscitation and enumeration of ClO2-treated E. coli O157: H7 on surface-injured green peppers, 3·03±0·02 and 6·45 ±0·02 log reductions were obtained after treatments by 0·62 and 1·24 mg l−1ClO2, respectively, for 30 min at 22°C and 90–95% relative humidity. In contrast, water washing achieved log reductions of 1·5±0·05–1·67±0·10 on injured surfaces and 2·44±0·04 on uninjured surfaces.  相似文献   

6.
In this study, Chinese-style sausages were subjected to air, vacuum or nitrogen packaging and stored at either 5 or 25°C. The survival characteristics of Escherichia coli O157: H7 during the storage period were determined. Results revealed that, when stored at 5°C, the number of viable E coli O157: H7 in sausages decreased slowly as the storage period extended, regardless of packaging methods. E coli O157: H7 in sausages decreased from an initial population of ca 5·97 log CFU g−1 to ca 4·42–4·81 log CFU g−1 after 40 days of storage at 5°C. It was also found that viable cells of E coli O157: H7 declined more rapidly in sausage stored at 25°C than at 5°C. No viable E coli O157: H7 was detected in either vacuum-packed or nitrogen-packed sausage after 40 days of storage at 25°C. On the other hand, the population of E coli O157: H7 reduced to non-detectable levels in air-packed sausages after 20 days of storage. Refrigerated storage and vacuum or nitrogen packaging provided conditions that slowed down the death rate of E coli O157: H7 in sausage. Furthermore, it was noted that, among the curing agents tested, NaCl exerted the most significant lethal effect on E coli O157: H7 in sausage during the storage period. © 1998 Society of Chemical Industry.  相似文献   

7.
《Food microbiology》2001,18(5):511-519
A study was undertaken to obtain information on survival of Escherichia coli O157:H7 in ground beef subjected to heat treatment, refrigeration and freezing and on survival of E. coli O157:H7 in fermented sausage kept at 7°C and 22°C. For the challenge test, a mixture of E. coli O157:H7 strains (EH 321, EH 385, EH 302) was used and enumeration was performed on an isolation medium suitable for recovery of stressed organisms: modified Levine's eosin methylene blue agar (mEMB). Heat resistance of E. coli O157:H7 decreased after pre-incubation at a reduced temperature.Escherichia coli O157:H7 was more susceptible to heat inactivation after storage at 7°C and die-off was even more enhanced if cultures were frozen prior to heat inactivation. The enhanced reduction of the pathogen at 56°C after prior storage under refrigeration was confirmed in a test with inoculated ground beef.Escherichia coli O157:H7 was able to survive in ground beef at 7°C for 11 days and at −18°C for 35 days showing maximal one log reduction during the storage period. Thus, ground beef contaminated with E. coli O157:H7 will remain a hazard even if the ground beef is held at low or freezing temperatures. At both 7°C and 22°C, a gradual reduction of E. coli O157:H7 was noticed in fermented sausage over the 35 days storage period resulting in a 2 log decrease of the high inoculum (106cfu 25 g−1). For the low inoculum (103cfu 25 g−1) a 2·5 log reduction was obtained in 7 and 28 days storage at respectively 22 and 7°C. Application of good hygienic practices and implementation of HACCP in the beef industry are important tools in the control of E. coli O157:H7.  相似文献   

8.
《Food microbiology》1999,16(1):83-91
Three strains ofEscherichia coliO157:H7 (ATCC 43895, Ent C9490 and 380–94) were inoculated into salami and heated in water baths at 50, 55 or 60°C. At intervals between 1 and 360 min, salami samples were removed from the water bath and examined for the presence of survivingE. coliO157:H7. Samples were directly plated onto sorbitol MacConkey (SMAC) agar, and onto tryptone soya agar (TSA) with SMAC overlay. The number of sub-lethally damaged cells in each sample was estimated from the differences between the resultant direct (uninjured cells only) and overlay (total recovery) counts. In samples heated at 50°C, the percentage of cell injury ranged from 71·8–88% for all strains. In samples heated at 55°C the percentage of sub-lethally damaged cells in strains ATCC 43895 and Ent C9490 was significantly higher (P< 0·001) at 97% than that observed in strain 380–94 (64%). Cell injury was not measured at 60°C. There were significant differences between the derived decimal reduction times (D-values) related to the different strains ofE. coliO157:H7, the heat treatment applied and the recovery/enumeration agars used. Significant interstrain differences (P< 0·05) in thermotolerance were noted. Strain Ent C9490 was significantly more heat resistant at 50°C and 60°C (D-values of 116·9 and 2·2 min, respectively), while at 55°C strain 380–94 was more thermotolerant (D-value of 21·9 min). The implications of these findings for the design of studies investigating the heat resistance ofE. coliO157:H7 in fermented meat environments are discussed.  相似文献   

9.
《Food microbiology》2002,19(2-3):211-219
The effect of 4% sodium lactate (NaL) in beefburger patty formulations on the survival and heat resistance of Escherichia coli O157:H7 was investigated. Fresh beef trimmings were inoculated with E. coli O157:H7 to a concentration of 6·0–7·0 log10 cfu g−1 and subjected to the processing stages of beefburger patty production. Two commercial beefburger patty formulations were produced: a ‘quality’ patty (100% beef) and an ‘economy’ patty (70% beef, 30% other ingredients, including onion, water, salt, seasoning, rusk and soya concentrate). Sodium lactate (4% w/v) was added to the beefburger patties during mincing and the formed patties were frozen and stored for 1 month. Beefburger patties without added NaL were used as controls. After frozen storage for 1 month, patties were examined for E. coli O157:H7 counts. There was a synergistic effect between freezing and NaL, which resulted in a small but significant reduction (P<0·05) (approximately 0·5 log10 cfu g−1) in E. coli O157:H7 numbers. The frozen beefburger patties were also heat-treated at 50, 55 and 60°C and the data analysed to derive D -values for E. coli O157:H7 cells. At each temperature treatment, theD -values of the quality and economy beefburger patties with 4% NaL were significantly lower (P<0·001) than the D -values of the patty formulations without NaL. The study demonstrates that the presence of 4% NaL in beefburger patty formulations can reduce the overall risks posed to consumers by the presence ofE. coli O157:H7 by, first; reducing pathogen survival during freezing and frozen storage of the uncooked product; and, second, by increasing the susceptibility of the pathogen to heat during normal cooking processes.  相似文献   

10.
《Food microbiology》2003,20(2):243-253
The effects of antimicrobial substances including nisin, acetic acid, lactic acid, potassium sorbate and chelators (disodium ethylenediamine tetraacetic acid [EDTA] and sodium hexametaphosphate [HMP]), alone or in combination and, with or without immobilization in calcium alginate gels, on the growth of Escherichia coli O157:H7 in ground beef were investigated. Results showed that acetic acid and potassium sorbate could inhibit the growth of E. coli O157:H7 effectively at 10°C and at 30°C. Both EDTA and HMP did not halt the growth of E. coli O157:H7. In an antimicrobial system immobilized with calcium alginate, most of the antimicrobials could not inhibit the growth of E. coli O157:H7 in ground beef at 10°C and at 30°C, with the exception of acetic acid and lactic acid. Immobilization did not enhance the effectiveness of acetic acid against E. coli O157:H7 in ground beef at 10°C and at 30°C (P>0.05) but it did enhance the effectiveness of lactic acid at 10°C. In a system combining different antimicrobials, treatment with nisin /EDTA or nisin/potassium sorbate at 10°C revealed a significantly lower population change of E. coli O157:H7 compared to samples treated with nisin, EDTA or potassium sorbate alone. The use of calcium alginate immobilization further enhanced the effectiveness of the combination system of nisin/EDTA, nisin/acetic acid and nisin/potassium sorbate on the growth of E. coli O157:H7 in ground beef at 10°C but it was not effective at 30°C.  相似文献   

11.
《Food microbiology》1999,16(3):299-307
Growth curves were generated for Escherichia coli O157:H7 in brain–heart infusion broth incubated at 37 or 15°C in the presence of individual and combinations of competing microflora. Broths were inoculated withE. coli O157:H7 (log103·00 cfu ml−1) and competitors (log104·00 cfu ml−1) and the initial pH of the broth was either neutral (7·0) or adjusted to 5·8 and then sequentially reduced to 4·8 over 10 h to simulate fermentation conditions. Growth curves were also generated for the competitors in these cultures, including Pseudomonas fragi, Hafnia alvei, Pediococcus acidilactici (pepperoni starter culture) and Brochothrix thermosphacta . Gompertz equations were fitted to the data and growth kinetics including lag phase duration, exponential growth rates and maximum population densities (MPD) calculated. In pure culture, the growth parameters for E. coli O157:H7 in neutral pH broths were significantly different from those recorded in simulated fermentation broths (P<0·05). The presence of competitors in the broth also had a significant effect on the growth kinetics of the pathogen. H. alvei significantly inhibited the growth (lag phase, growth rate and MPD) of E. coli O157:H7 at 37°C, neutral pH and outgrew the pathogen under these conditions. In neutral pH cultures, two other competitors, B. thermosphacta and P. acidilactici also inhibited the lag phase of the pathogen but had no effect on the other growth parameters. In simulated fermentation broths, the growth rate of E. coli O157:H7 was consistently slower and the MPD lower in the presence of a competitive microflora than when grown individually. At 15°C, only one competitor, P. fragi significantly inhibited the lag phase of the pathogen. The implications of these findings for food safety are discussed.  相似文献   

12.
《Food microbiology》2001,18(1):75-85
A sausage batter (35% pork, 35% beef, 30% fat) was inoculated with high (5·46–5·68), medium (3·78–4·54) or low (2·30–2·60 log10cfug−1) levels of Escherichia coli O157:H7 and with high (5·05–5·41) or medium (2·92–3·35 log10cfug−1) levels of Listeria monocytogenes serovar 4b and fermented using starter cultures A (Staphylococcus xylosus DD-34 with bacteriocin-producingPediococcusacidilactici PA-2 and Lactobacillus bavaricus MI-401) and B(S. carnosus MIII withLb. curvatus Lb3). Sausages were manufactured (fermented and dried) in a smoke chamber at 17–23°C for 15 days and further stored at 15–17°C for 34 days. The numbers of E. coli O157:H7 decreased more using starter B than starter A (first experiment P<0·0015, second experiment P<0·0002) but the organism was not eliminated. Small numbers of E. coli O157:H7 were more often detected after enrichment for 18–24 h than for 6 h (P=0·0044) when tested after deep freezing. By contrast, L. monocytogenes decreased more rapidly in the high-inoculum sausages produced with starter A (P<0·0001) but no significant difference was detected between the starters in the medium-inoculum sausages. L. monocytogenes was eliminated from the medium-inoculum sausages after 49 days.  相似文献   

13.
《Food microbiology》1999,16(5):447-458
The ability of pH-dependent, stationary phase acid resistance to cross-protect Escherichia coli O157:H7 against a subsequent lethal thermal stress was evaluated using microbiological media and three liquid foods. Three strains were grown for 18 h at 37°C in acidogenic (TSB+G, final pH 4·6–4·7) and non-acidogenic (TSB-G, final pH 7·0–7·2) media to provide stationary phase cells with and without induction of pH-dependent acid resistance. The cells were then heated in BHI broth (pH 6·0) at 58°C, using a submerged coil apparatus. The TSB+G grown strains had greatly increased heat resistance, with the heating time needed to achieve a five-log inactivation, being increased two- to four-fold. The z -values of TSB+G and TSB-G grown cells were 4·7°C and 4·3°C, respectively. Increases in heat resistance with TSB+G-grown E. coli O157:H7 were also observed using milk and chicken broth, but not with apple juice. However, cross-protection was restored if the pH of the apple juice was increased from 3·5 to 4·5. The data indicate that pH-dependent acid resistance provides E. coli O157:H7 with cross-protection against heat treatments, and that this factor must be considered to estimate this pathogen's thermal tolerance accurately.  相似文献   

14.
In hot climates where quality of milk is difficult to control, a lactoperoxidase (LP) system can be applied in combination with conventional preservation treatments at sub-lethal levels to inhibit pathogenic microbes. This study investigated the effect of combined heat treatments (55 °C, 60 °C and 72 °C) and milk acidification (pH 5.0) on survival of acid-adapted and non-adapted Escherichia coli O157:H7 strains UP10 and 1062 in activated LP goat milk. Heat treatment at 72 °C eliminated E. coli O157:H7. Acid-adapted strains UP10 and 1062 cells showed resistance to combined LP and heat at 60 °C in fresh milk. The inhibition of acid-adapted and non-adapted E. coli O157:H7 in milk following combined LP-activation, heat (60 °C) and milk acidification (pH 5.0) suggests that these treatments can be applied to reduce E. coli O157:H7 cells in milk when they occur at low numbers (<5 log10 cfu mL?1) but does not eliminate E. coli O157:H7 to produce a safe product.  相似文献   

15.
《Food microbiology》2002,19(2-3):159-165
A method for quantitative detection of Escherichia coli O157:H7 based on the polymerase chain reaction (PCR) was developed. The method used the NIH Image 1·61 software program to quantitatively analyse the intensity of the fluorescent image of the amplified PCR product. Based on the PCR with SLT1 and SLT2 primers used separately, a log-linear relationship between the numbers of cfu of E. coli O157:H7 inoculated into ground beef and the intensity of the PCR products was achieved with and without enrichment. Without enrichment, 150 cfu of E. coli O157:H7 per gram of ground beef were detected. In contrast, the detection limit decreased to 1·2 cfu g−1 of ground beef using SLT1 and SLT2 primers after 4·5 h of enrichment using modified EC broth with 20 μg ml−1 of novobiocin.  相似文献   

16.
《Food microbiology》1999,16(4):367-374
When stationary phase Escherichia coli O157:H7 cells were subjected to extreme acid shock (pH 2·0, 6 h, 37°C) cell survival was as great as 10%, but culture conditions greatly affected the acid resistance. Anaerobic cultures were more resistant to extreme acid shock if the glucose concentration of the growth medium was high, acids accumulated, and pH declined. By varying pH and acetate concentration, it was possible to demonstrate a high correlation (R2=0·86) between undissociated acetate and extreme acid resistance. Because dissociated acetate and extreme acid resistance were poorly correlated (R2<0·01), it appeared that the pH effects were being mediated via acetate dissociation. Propionate and butyrate were as effective as acetate, but formate, lactate, benzoate and the uncoupler, carbonylcyanide m -chlorophenylhydrazone (CCCP), were much less effective in promoting extreme acid-resistance. Acetate, propionate, butyrate, benzoate and CCCP all decreased the intracellular pH of E. coli O157:H7, but the correlation between intracellular pH and extreme acid resistance was low (R2<0·01). Cultures grown aerobically only needed half as much acetate to induce extreme acid resistance as those grown anaerobically, and the addition of the reducing agent, cysteine, to anaerobic media made the stationary phase cells less responsive to acetate. An rpoS mutant of E. coli O157:H7 was at least 100-fold more sensitive to acid shock than the wild-type, and large amounts of acetate were needed to promote even a small increase in viability.  相似文献   

17.
The fresh-cut industry must treat process water to guarantee its microbial quality before reuse or recirculation back into the processing line. In the present study, the suitability of high-power ultrasound (HPU) for disinfecting and recycling process water was evaluated. An ultrasonic horn (20 kHz) was used to inactivate Escherichia coli O157:H7 inoculated in five types of process water which showed different physical and chemical characteristics. Differences in the inactivation level of E. coli O157:H7 at different HPU densities (0.14, 0.28, 0.56, and 1.12 kW/L) with controlled (20–25 °C) and uncontrolled (15–72 °C, 3.6 °C/min) temperature increase were studied. Results showed that the higher the power density and temperature, the higher the efficiency, reaching up to 6 log reductions of E. coli O157:H7. Alkalinity (between 0 and 253 mg HCO3 ?/L) and organic matter concentration (between 9 and 3,525 mg O2/L) in water did not reduce ultrasonic efficacy against E. coli O157:H7. Agglomerates >90 μm, which represented 34 % of those present in the process water, were reduced to only 11 % by HPU. Results indicate that HPU can be successfully applied to treat process water of the fresh produce industry because the antimicrobial efficacy was not affected by the continuous variation of the process water quality. HPU can be a suitable technology for the fresh produce industry to be able to reduce consumption of water and decrease wastewater and the generation of disinfection by-products.  相似文献   

18.
Alfalfa seeds were inoculated with a three-strain cocktail of Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium DT104, or Listeria monocytogenes by immersion to contain approximately 6 to 8 log CFU/g and then treated with a fatty acid-based sanitizer containing 250 ppm of peroxyacid, 1,000 ppm of caprylic and capric acids (Emery 658), 1,000 ppm of lactic acid, and 500 ppm of glycerol monolaurate at a reference concentration of 1X. Inoculated seeds were immersed at sanitizer concentrations of 5X, 10X, and 15X for 1, 3, 5, and 10 min and then assessed for pathogen survivors by direct plating. The lowest concentration that decreased all three pathogens by >5 log was 15. After a 3-min exposure to the 15X concentration, populations of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes decreased by >5.45, >5.62, and >6.92 log, respectively, with no sublethal injury and no significant loss in seed germination rate or final sprout yield. The components of this 15x concentration (treatment A) were assessed independently and in various combinations to optimize antimicrobial activity. With inoculated seeds, treatment C (15,000 ppm of Emery 658, 15,000 ppm of lactic acid, and 7,500 ppm of glycerol monolaurate) decreased Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes by 6.23 and 5.57 log, 4.77 and 6.29 log, and 3.86 and 4.21 log after 3 and 5 min of exposure, respectively. Treatment D (15,000 ppm of Emery 658 and 15,000 ppm of lactic acid) reduced Salmonella Typhimurium by >6.90 log regardless of exposure time and E. coli )157:H7 and L. monocytogenes by 4.60 and >5.18 log and 3.55 and 3.14 log after 3 and 5 min, respectively. No significant differences (P > 0.05) were found between treatments A, C, and D. Overall, treatment D, which contained Emery 658 and lactic acid as active ingredients, reduced E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes populations by 3.55 to >6.90 log and may provide a viable alternative to the recommended 20,000 ppm of chlorine for sanitizing alfalfa seeds.  相似文献   

19.
The effects of plant compounds on Escherichia coli O157:H7 and two major heat-induced heterocyclic amines (HCAs) MeIQx and PhIP in grilled ground beef patties were determined. Ground beef with added apple and olive extracts, onion powder, and clove bud oil was inoculated with E. coli O157:H7 (107 CFU/g) and cooked to reach 45 °C at the geometric center, flipped and then cooked for another 5 min. Cooled samples were taken for microbiological and HCA analyses. Olive extract at 3% reduced E. coli O157:H7 to below detection. Reductions of up to 1 log were achieved with apple extract. Olive and apple extracts reduced MeIQx by up to 49.1 and 50.9% and PhIP by up to 50.6 and 65.2%, respectively. Onion powder reduced MeIQx and PhIP by 47 and 80.7%, respectively. Inactivation of E. coli O157:H7 and suppression of HCAs in grilled meat were achieved by optimized amounts of selected plant compounds.  相似文献   

20.
Microorganisms persisting in slaughter plant environments may develop acid resistance and be translocated to other environmental surfaces or products. The objective of this study was to evaluate the potential of Escherichia coli O157:H7 to form biofilms and maintain acid resistance, under different culture habituation scenarios, on stainless steel coupons (2 × 5 × 0.08 cm), in the presence of beef carcass decontamination runoff fluids (washings). Coupons were stored in test tubes with unsterilized water washings (WW; pH 6.94) or lactic acid washings (LAW; pH 4.98), which were inoculated with E. coli O157:H7 (103–104 CFU/ml) and incubated at 15 (24 or 48 h) or 35 °C (7 or 24 h), simulating different habituation scenarios on sites of a slaughter plant, including sanitation and overnight drying, during consecutive operational shifts. Acid resistance (AR) of planktonic and detached E. coli O157:H7 cells was assessed in tryptic soy broth adjusted to pH 3.5 with lactic acid. The highest pre-drying attachment and AR of E. coli O157:H7 were observed after 24 h at 35 °C and 48 h at 15 °C. Drying reduced (P < 0.05) recovery of attached E. coli O157:H7 cells; however, exposure of dried coupons to uninoculated washings allowed recovery of attached E. coli O157:H7, which restored AR, especially under conditions that favored post-drying growth. Exposure of attached cells to 50 ppm PAA for 45 s before drying, as well as habituation in LAW, reduced the recovery and AR of E. coli O157:H7. Therefore, incomplete removal of biofilms may result in cells of increased AR, especially in sites within a slaughter plant, in which liquid meat wastes may remain for long periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号