共查询到20条相似文献,搜索用时 0 毫秒
1.
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求 和 统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman(TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 相似文献
2.
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求I2和SPE统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman (TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 相似文献
3.
E. Meland N.F. Thornhill E. Lunde M. Rasmussen 《American Institute of Chemical Engineers》2012,58(4):1181-1193
This article gives an overview of methods concerning the detection and quantification of internal leaks through valves. It also presents comparisons of the methods using new experimental data with emphasis on the spectral information in the signals. The first method utilizes known analytical relationships between acoustic emissions and fluid flow. The second method is a data‐driven comparative approach where an online signal from a leaking valve is compared with a set of saved reference signals from leaking valves. The work presents a new and improved way of leak estimation compared to what is practiced in the industry today, which will ultimately result in safer operations and reduced maintenance related costs. © 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
4.
核独立元分析(kernel independent component analysis,KICA)故障检测方法的故障检测时间易受独立元顺序和主导独立元数目经验选取的影响,针对这个问题,提出基于KICA和高斯混合模型(Gaussian mixture model,GMM)的故障检测方法。采用KICA从正常工况测量数据中提取独立元,用GMM拟合各独立元的概率密度函数,建立基于GMM的监控量及其控制限;计算各独立元的监控量均值,以此判断其非高斯性强弱,对每个强非高斯独立元进行单独监控,对弱非高斯部分采用主元分析法进行监控。在Tennessee Eastman过程上的仿真结果说明,相比于KICA故障检测方法,所提方法不需要排序独立元和选取主导独立元数目,避免了其对故障检测时间的影响,能够有效利用过程信息,缩短故障检测的延迟时间。 相似文献
5.
基于特征子空间的KPCA及其在故障检测与诊断中的应用 总被引:2,自引:0,他引:2
针对标准KPCA(kernel principal component analysis)不适合大样本分析的缺点,提出了一种基于特征子空间的KPCA(FS_KPCA)及其故障检测与诊断方法,该方法通过构建具有较小维数的特征子空间上的正交基来简化核矩阵,从而降低KPCA的计算复杂性.与标准KPCA方法相比,FS_KPCA方法具有更高的计算效率且只需较小的计算机存储空间.通过非等温连续反应釜过程的故障检测与诊断的应用实例,说明了本算法的有效性. 相似文献
6.
In this paper, a multiblock kernel independent component analysis (MBKICA) algorithm is proposed. Then a new fault diagnosis approach based on MBKICA is proposed to monitor large-scale processes. MBKICA has superior fault diagnosis ability since variables are grouped and the non-Gaussianity is considered compared to standard kernel methods. The proposed method is applied to fault detection and diagnosis in the continuous annealing process. The proposed decentralized nonlinear approach effectively captures the nonlinear relationship and non-Gaussianity in the block process variables, and shows superior fault diagnosis ability compared to other methods. 相似文献
7.
质量相关的故障检测已成为近几年研究热点,它的目标是在过程监测中,对质量相关的故障检测率更高,对质量无关的故障少报警或不报警。传统主元分析算法的故障检测会对所有故障均报警,不能达到上述要求。另外,在实际工业生产中,质量变量通常难以实时获得,需要后续分析或延时得到。为此,提出一种融合贝叶斯推断与互信息的加权互信息主元分析算法。首先利用贝叶斯推断的加权方法将度量过程变量和质量变量之间相关关系的互信息进行融合,选出包含质量变量信息量最大的一组过程变量。然后对过程变量利用主元分析(principal component analysis,PCA)进行统计建模,再次根据加权互信息选出包含质量变量信息量最大的主元,建立统计量进行故障检测。最后,通过实验验证该方法的可行性和有效性。 相似文献
8.
介绍了过程控制系统中引起振荡的一些主要原因,并从单回路与厂级多回路控制系统的角度分别对新近主要的振荡检测与诊断技术进行介绍,对各种方法进行了简要评述,同时指出一些新的研究发展趋势. 相似文献
9.
一种基于改进KICA的非高斯过程故障检测方法 总被引:2,自引:1,他引:1
针对基于核独立元分析(kernel independent component analysis,KICA)的故障检测方法只考虑非高斯信息提取而忽略局部近邻结构保持的问题,提出基于改进KICA的过程故障检测方法。将KICA法中只考虑非高斯信息提取的负熵最大化准则转换为熵最小化准则,结合局部保持投影的相似局部近邻结构准则,提出了同时考虑非高斯信息提取和局部近邻结构保持的目标函数,通过粒子群优化算法进行全局寻优,然后建立监控统计量对过程进行监控。在Tennessee Eastman过程上的仿真结果说明,与基于KICA的故障检测方法相比,所提方法能够在保持数据集局部近邻结构的同时,提取非高斯信息,能够有效缩短故障检测的延迟时间,提高故障检测率。 相似文献
10.
多向核独立成分分析(multiway kernel independent component analysis,MKICA)在监测间歇过程非高斯性和非线性方面取得了广泛应用,其仅仅是将线性独立成分分析(independent component analysis,ICA)方法利用核主成分分析(kernel principal component analysis,KPCA)白化扩展到非线性领域,但数据经KPCA白化后只考虑数据信息最大化未考虑数据簇结构信息的不足,为解决此问题,采用核熵成分分析(kernel entropy component analysis,KECA)代替KPCA白化的过程监测方法。该方法首先利用AT展开方法将过程三维数据变为二维数据;其次用KECA进行白化处理的同时解决数据的非线性;然后建立ICA监测模型用于非高斯生产过程监测;最后将该方法应用到青霉素发酵仿真和实际的工业过程并与MKICA方法进行对比,验证该方法的有效性。 相似文献
11.
In this paper, a new non‐linear process monitoring method based on kernel independent component analysis (KICA) is developed. Its basic idea is to use KICA to extract some dominant independent components capturing non‐linearity from normal operating process data and to combine them with statistical process monitoring techniques. The proposed method is applied to the fault detection in the Tennessee Eastman process and is compared with PCA, modified ICA, and KPCA. The proposed approach effectively captures the non‐linear relationship in the process variables and showed superior fault detectability compared to other methods while attaining comparable false alarm rates. 相似文献
12.
基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法 总被引:1,自引:1,他引:0
针对一类非线性多模态的化工过程,提出一种基于概率核主元的混合模型(PKPCAM),并利用贝叶斯推理策略进行过程监控与故障诊断.在提出的模型中, 每个操作模态由一个局部化的概率核主元分量描述,从而构建的一系列分量对应了不同的操作模态.首先,将过程数据从原始的度量空间投影到高维特征空间;其次,在该特征空间建立概率主元混合模型,从概率角度刻画数据集的多个局部分量特征;最后,在提取的核主元分量内获得测试样本的后验概率,结合模态内的马氏距离贡献度,提出基于贝叶斯推理的全局概率指标进行故障检测,同时利用模态内变量的相对贡献度,基于全局贡献度指标进行故障诊断.利用TEP仿真平台,与基于k均值聚类的次级主元分析和核主元分析的方法进行了对比分析,验证了提出的贝叶斯推理的PKPCAM方法对非线性多模态过程进行故障检测与诊断的可行性和有效性. 相似文献
13.
Mahdieh Askarian Reza Zarghami Farhang Jalali‐Farahani Navid Mostoufi 《加拿大化工杂志》2016,94(12):2315-2325
14.
基于时间结构盲源信号分析的过程监控和故障诊断方法 总被引:1,自引:1,他引:0
化工过程中众多的测量变量信息通常可由少量的隐变量信息表达出来以便进行统计过程监视.针对过程中所采集的数据往往存在一定的时间结构(即过程不能满足独立同分布条件)的情况,提出了一种基于时间结构盲源信号分析的过程性能监控和故障诊断方法,以克服传统的统计过程分析的独立同分布要求.通过对非等温连续搅拌反应器(CSTR)的仿真研究表明,这种方法是可行的.为了与传统的独立成分分析(ICA)方法相比较,本文还作了相应的对比研究,结果表明,这种方法比基于传统ICA过程性能监控和故障诊断方法具有更少的误报率和漏报率,说明这种方法不但是可行的,并且是有效的. 相似文献
15.
Siyuan Zhou;Xiaomin Zhou;Hongfei Liu; 《加拿大化工杂志》2024,102(7):2495-2510
Process monitoring and fault diagnosis systems are essential for ensuring the quality and safety of industrial processes. Real industrial process data always has dynamic features, autocorrelation features, and non-Gaussian distributions, making many multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA), not work well. To solve the problem, a new process monitoring method (named DPCA-ICA-moving window Kolmogorov–Smirnov test [MWKS]) is proposed in the paper, which is a combination of DPCA and independent component analysis (ICA) with adaptive weight parameters and introduces a moving window technique and two-sample K-S test to obtain the K-S distance of the commonly used Hotelling's and square predictive error as new monitoring parameters. Experimental results on the Tennessee Eastman chemical process demonstrate the effectiveness and accuracy of the proposed method, which shows it has better performance than existing commonly used methods. The average fault detection rate (FDR) is 93.131%, while the average false alarm rate (FAR) of the proposed method is only 0.1%. 相似文献
16.
基于改进核主成分分析的故障检测与诊断方法 总被引:3,自引:6,他引:3
针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题, 提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数中, 使得到的特征空间不仅具有原始样本空间的整体结构, 还保持样本空间相似的局部近邻结构, 可以包含更丰富的特征信息。在此基础上, 本文使用改进核主成分分析方法把原始变量空间映射到特征空间, 使用费舍尔判别分析在特征空间中构建距离统计量并通过核密度估计确定其控制限, 进一步利用相似度的性能诊断方法识别发生的故障类型。采用Tennessee Eastman过程故障检测数据集进行的仿真实验表明所提方法可以取得较好的效果。 相似文献
17.
基于主元分析(PCA)的统计检测方法已经被广泛应用于各种化工过程的故障检测和识别.移动主元分析(moving principal component analysis,简称MPCA)算法基于PCA,根据主元子空间的变化来判断故障是否发生.然而,基于主元分析的统计检测方法是线性方法,无法有效应用于非线性系统.因此,提出一种适合于非线性系统的故障检测方法——基于核主角(kernel principal angle,简称KPA)的故障检测方法,其基本思想与MPCA相似,主要内容包括构建特征子空间和核主角测量两部分.TE过程故障检测仿真实验证明,基于核主角的故障检测方法优于传统的多元统计检测方法(cMSPC)和MPCA. 相似文献
18.
19.
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator. 相似文献
20.