共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于模糊聚类的神经网络短期负荷预测方法 总被引:10,自引:12,他引:10
针对电力负荷的特点,综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,提出了一种新的短期负荷预测方法。通过模糊聚类选取学习样本,采用反向传播算法,对24点每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,在负荷平稳的季节和负荷波动较大的季节都具有较好的预测精度。 相似文献
4.
电力系统短期负荷预测的模糊神经网络方法 总被引:5,自引:0,他引:5
针对电力系统短期负荷预测问题,考虑到气象因素对负荷的影响,提出了一种模糊神经网络的短期负荷预测方法,首先根据评价函数选取相似日学习样本,然后利用隶属函数对影响负荷的特征因素向量的分量进行模糊处理,采用反向传播算法,对24点每点建立一个预测模型,提高了学习效能,适合在短期负荷预测中使用,具有较好的预测精度。 相似文献
5.
基于模糊粗糙集和神经网络的短期负荷预测方法 总被引:18,自引:1,他引:18
针对采用神经网络进行电力系统短期负荷预测时其网络输入变量的选择是影响预测效果的关键问题,该文提出使用模糊粗糙集理论解决这一问题:对采集到的信息进行特征提取、形成决策表;利用模糊粗糙集理论进行属性约简、去除冗余信息;用得到的属性作为BP网络的输入进行训练预测。该方法既全面考虑了影响负荷预测的历史时间序列、气象等各种因素,为合理地选择神经网络的输入变量提供了一种新的方法,又避免了由于输入变量过多而导致神经网络拓扑结构复杂、训练时间长等不足。计算实例表明,文中提出的方法是有效且可行的。 相似文献
6.
基于模式识别的自适应短期负荷预测系统 总被引:4,自引:0,他引:4
短期电力负荷预测是电力调度部门制定发电计划的依据,预测系的灵活适应性是实现电网经济运行的重要保证。在分析影响日电力负荷主要因素的基础上,给出了用于日荷预测的负荷模式定义,基于海明距离给出了负荷模式相拟度的计算方法,有效实现了预测负荷所需要的历史负荷模式样本的抽取。利用人工神经网络实现由历史负荷模式到预测负荷的映射。基于C++面向对象的程序设计方法开发了一套灵活的智能自适应短期预测系统。多个用户的应用结果表明,本系统具有很好的实用性和满意的预测结果。 相似文献
7.
设计了一个三层神经网络模型来实现电力系统的短期负荷预测。用了改进的BP学习算法,以提高训练的收敛速度。预测仿真结果表明,所设计的神经网络是可以进行短期负荷预测的。 相似文献
8.
短期电力负荷预报的自适应模糊神经网络方法 总被引:9,自引:3,他引:9
提出了一种的新的电力预报法-自适应模糊神经网络方法,该自适应模糊神经网络推理系统具有类似于神经网络的结构,并应用了一种混合的自适应学习算法,在此基础上,研究了该方法在电力负荷预报中的应用并与神经网络方法作了比较。 相似文献
9.
基于模糊神经网络的电力负荷短期预测 总被引:5,自引:3,他引:5
针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems)网络提供的实际数据进行详细分析确定了影响日最大负荷的相关因素,进而选择了合适的模糊输入以建立相应的模糊神经网络预测模型,并取得了较为理想的预测结果。算例分析结果充分证明了模糊神经网络在短期电力负荷预测方面具有较好的应用前景。 相似文献
10.
基于自适应成模糊逻辑系统的短期负荷预测方法 总被引:2,自引:0,他引:2
提出了一种基于自适应最优模糊逻辑系统的电力系统短期负荷预测方法。首先通过最近邻聚类算法对负荷历史数据进行分组,再将第一组数据(一个聚类)视为一个数据对,用最优模糊逻辑系统来进行预测系统的建模。实验结果表明,这种预测方法具有简单、实用等特点,且产高的精度。 相似文献
11.
12.
提出了一种免疫聚类径向基函数神经网络(ICRBFNN)模型来预测电力系统短期负荷。在ICRBFNN的设计中,根据共生进化和免疫规划原理,提出了共生进化免疫规划聚类算法,该算法可以自动确定RBF网络隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对华东某市进行的电力系统短期负荷预测表明,与传统的径向基函数神经网络(RBFNN)预测方法相比,ICRBFNN方法具有更高的预测精度和更短的训练时间。 相似文献
13.
基于小波分解和人工神经网络的短期负荷预测 总被引:25,自引:9,他引:25
提出了一种基于小波分解和人工神经网络(ANN)的电力系统短期负荷预测方法.通过小波变换把负荷序列分解为不同频段的子序列,再对这些子序列分别采用相匹配的人工神经网络模型进行预测,最后综合得到负荷序列的最终预测结果.在所提出的方法中小波分解能够提取负荷的一些周期性和非线性特征,并对其进行进一步细分,根据其子序列各自所具有的规律采用相应的预测方法;而ANN对于处理非线性及无法显示明确规律的问题具有优势.经实例验证,与传统方法相比该方法具有很高的预测精度和较强的适应能力. 相似文献
14.
15.
采用谱分析建模和基于人工神经网络的短期负荷预测方案 总被引:4,自引:1,他引:4
提出了一种基于谱分析法进行建模的短期负荷预测方案,该方案利用负荷历史数据的谱分析结果进行人工神经网络(ANN)模式分类和选择输入变量.方案采用快速傅立叶变换(FFT)进行负荷数据预处理,运用滤波算法及小时负荷曲线的频谱分析来研究电网负荷的周期特性,所得结果表明四季负荷的谱特性具有明显差异,应采用不同的模型和方案进行预测.谱分析有助于各时段预测方案提取输入变量.利用该思路构造的基于人工神经网络的负荷预测方案被用于预测广东省网的负荷,与其他普遍采用的输入变量预测结果的对比表明,所提方案在短期负荷预测中的性能良好. 相似文献
16.
人工鱼群神经网络在电力系统短期负荷预测中的应用 总被引:11,自引:3,他引:11
短期负荷预测结果对电力系统的经济效益具有重要影响.人工鱼群算法是最新提出的新型寻优策略,具有良好的克服局部极值、获得全局极值的能力.文章建立了一种新的人工鱼群神经网络预测模型,利用人工鱼群算法训练神经网络的权值,再将该神经网络用于短期负荷预测.对某电力系统进行的负荷预测结果表明,该方法与传统的BP神经网络预测方法相比具有较强的自适应能力和较好的预测效果. 相似文献
17.
应用人工神经网络进行短期负荷预测 总被引:11,自引:5,他引:11
本文提出了一种应用人工神经网络进行电力系统短期负荷预测的方法。负荷按照每周各日进行分类,共七种模式,学习样本选取每周中的相同类型日。为了提高预测精度,对原始数据中的伪数据进行清除,对于那些可以预料到的随机干扰,应用专家系统原理予以处理。通过对银川供电局负荷的实际预测,表明本文所提供方法可以实际应用。 相似文献
18.
基于模糊推理系统的多因素电力负荷预测 总被引:14,自引:4,他引:14
在多因素负荷预测的建模中,模糊推理系统是一种较为有效的方法。输入变量选择和输入空间划分是模糊建模的基础,也是难点所在。数据挖掘中的分类思想有助于解决此问题。文中采用分类和回归树(CART)算法对解决这一问题进行了尝试,并构造ANFIS网络进行参数辨识。建模过程几乎完全基于数据进行,不需要人工的过多干预,保证了模型能客观地反映相关变量与负荷值之间的复杂关系。用该方法与普通BP算法分别对浙江省多地区进行了一个月的日负荷预测实例分析,该方法较好的收敛性和预测精度说明,CART算法与ANFIS相结合,是基于数值的模糊建模的一种有效方法。 相似文献