首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two groups of polyacrylate latexes with higher (21 ~ 35 °C) or lower (−33 ~ −43 °C) glass transition temperatures (Tg) were prepared by adjusting the monomer ratio of butyl acrylate (BA) and styrene (St), and the effect of acrylic acid (AA) on water-whitening resistance of these latex films was investigated. It was found that the water-whitening resistance of the two groups of latex films was different. With the increase of AA content, the water whitening resistance of the latex films with higher Tg continued to improve, while that of the latex films with lower Tg increased first and then decreased. A series of characterizations, such as light transmittance, water whitening, water absorption, static water contact angle, surface morphology, and optical microscope test of the latex film, and so forth, showed that the reason for this difference was that under higher AA content (≥5%), compared with the polyacrylate latex films with lower Tg, the latex films with higher Tg could reach the saturation state of water absorption quickly, and water in these latex films exhibited continuous and large area distribution, rather than formation of many so-called micro- or nano-scale water sacs that can scatter light as found in the latex films with lower Tg.  相似文献   

2.
The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002  相似文献   

3.
Aging due to the storage time on latex film formation was studied using the photon transmission method. The UV visible technique was used to monitor the evolution of transparency during film formation from two different polystyrene (PS) particles produced by using two different steric stabilizers, i.e., polyvinyl alcohol and polyvinyl pyrrolidone. The latex films were prepared from PS particles at room temperature before and after aging and annealed at elevated temperatures in various time intervals above glass transition (Tg). The increase in the transmitted photon intensity Itr was attributed to the increase in the number of disappeared particle–particle interfaces. Relative decrease in transparency and delay in film formation were observed in the aged latex films compared to the nonaged ones. The Prager–Tirrell model was employed to interpret the increase in crossing density at the junction surface. The back and forth activation energies (ΔE) were measured and found to be dependent on aging for a diffusing polymer chain across the junction surface. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2014–2021, 2001  相似文献   

4.
The surface properties of films prepared from a blend of precipitated calcium carbonate pigment (PCC) and poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA); Tg = 0°C] latex were investigated in terms of the surface characteristics of the PCC and P(BMA/BA) latex particles. It was found that the presence of carboxyl groups on the P(BMA/BA) latex particles significantly improved the uniformity of the distribution of the PCC particles within the P(BMA/BA) copolymer matrix and the gloss of the resulting films. This phenomenon could be explained by an acid‐base reaction between the PCC particles and the carboxylated P(BMA/BA) latex particles. Studies on the influence of the composition of PCC/P(BMA/BA) latex blends on the gloss and transparency of the films were also performed, which led to the determination of the critical pigment volume concentration (CPVC) of this system, which was found to be 42 vol %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 891–900, 2002  相似文献   

5.
Drying in the absence of water (sintering) of pigmented coatings made of styrene–butadiene (SB) latex and kaolin clay at different levels of pigmentation was investigated. As found from X-ray photoelectron spectroscopy, sintered coatings showed a higher SB area percent on the surface than did latex with a high glass-transition temperature (Tg) and dried at room temperature. This was a result of latex spreading at the surface. Sintering the high-Tg coatings that were dried at room temperature caused a decrease in the surface energy. Drying in the presence of water (wet coalescing) was compared to drying in the absence of water (sintering). Even though sintered coatings were more porous and had higher gloss, no significant difference was found in the SB/clay ratio at the surface or in the surface energy above the critical pigment volume concentration (CPVC). However, at and below CPVC, the sintering process yielded a higher SB content at the surface and a lower surface energy than the wet-coalescing process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 968–975, 2001  相似文献   

6.
The synthesis of hollow latex particles through seeded emulsion polymerization involves a series of intricate steps, including the formation of distinct polymer layers with specific properties. Despite extensive research, preserving the desired hollow structure remains challenging due to the unclear role of the encapsulating polymer layers. This study systematically adjusts the glass transition temperature (Tg) of the intermediate layer by varying the butyl acrylate (BA) ratio in the monomer feed mixture. By controlling the reaction temperature during alkali swelling, we explore the critical influence of Tg on hollow latex particle formation from carboxylated core latex particles. To ensure long-term hollow structure retention after drying, a rigid outer layer is polymerized onto the intermediate layer. Surprisingly, higher divinylbenzene (DVB) mass ratios (5.0 and 10.0 wt%) do not result in a highly crosslinked hollow shell due to DVB self-nucleation. This paper emphasizes the importance of precise design parameters for both intermediate and outermost layers in achieving and maintaining hollow latex particle structures. Understanding each layer's role and optimizing their compositions contribute to advancing hollow latex particle synthesis through seeded emulsion polymerization.  相似文献   

7.
Minimum film-formation temperature (MFFT) of vinylidene chloride (VDC)-methyl acrylate (MA) copolymer latexes prepared by batch emulsion polymerization with various compositions from 20 to 97 wt % of VDC were measured. For latexes with VDC content below 90 wt %, MFFT was similar to polymer Tg. As VDC content increased beyond 90 wt %, the MFFT curve plotted against VDC content rose sharply, in contrast with the Tg curve that descended smoothly. Measurements of infrared absorption of latexes in the dispersed state, and X-ray diffraction and infrared absorption of lyophilized polymers were conducted on 40 : 60, 80 : 20, and 95 : 5 VDC-MA specimens. These observations indicated that only 95 : 5 VDC-MA specimens were highly crystalline. It was therefore believed that film-formation property of latex with high VDC content was significantly affected by polymer crystallinity of particles in the dispersed state. Morphology and oxygen gas transmission rate of heat-treated and non-heat-treated coatings of 95 : 5 VDC-MA latex were investigated. Heat treatment of coatings beyond the temperature at which crystalline polymer began to melt induced effective particle coalescence, resulting in reduced oxygen gas transmission rate. This supported our belief that film-formation property of VDC-MA latex with high VDC content was significantly affected by polymer crystallinity. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 565–572, 1998  相似文献   

8.
Film formation from surfactant‐free polystyrene (PS) latex was performed in the presence of 5% Na‐montmorillonite (NaMMT). The composite films were prepared from pyrene (P)‐labeled PS particles at room temperature and annealed at elevated temperatures above the glass‐transition (Tg) temperature of polystyrene. Scattered light (Is) and fluorescence intensity (IP) from P were measured after each annealing step to monitor the stages of composite film formation. Minimum film formation temperature, T0, and healing temperatures, Th, were determined. Void closure and interdiffusion stages were modeled and related activation energies were measured. From these results, it was found that the presence of NaMMT in the PS latex film only affects the minimum film formation, but does not affect the void closure and backbone motion activities. POLYM. COMPOS., 27:299–308, 2006. © 2006 Society of Plastics Engineers  相似文献   

9.
A photon-transmission method was used to monitor the evolution of transparency during film formation from various polystyrene (PS) particles which were produced using different steric stabilizers, that is, poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and polyvinylpyrrolidone (PVP). The latex films were prepared from PS particles at room temperature and annealed at elevated temperatures in various time intervals above the glass transition (Tg). To simulate the latex film-formation process, a Monte Carlo technique was performed for photon transmission through a rectangular lattice. The number of transmitted (Ntr) photons were calculated as a function of particle–particle interfaces that disappeared. The increase in the transmitted photon intensity (Itr) was attributed to the increase in the number of interfaces that disappeared. The Prager–Tirrell (PT) model was employed to interpret the increase in crossing density at the junction surface. The backbone activation energy (ΔE) was measured and found to be around 120 kcal mol−1 for a diffusing polymer chain across the junction surface for all PS latex films. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1257–1267, 1998  相似文献   

10.
The adsorption of sodium polyacrylate [NaPA] on noncarboxylated and carboxylated poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA)] latexes and ground calcium carbonate (GCC) was studied. The adsorption isotherms of NaPA on P(BMA/BA) latex surfaces showed that NaPA tended to adsorb to a greater extent onto the latex particle surfaces when the carboxyl group surface coverage of latex polymer particles is low, which indicates a repulsive interaction between the dissociated carboxyl groups and NaPA macroions. The electrophoretic mobility of cleaned model P(BMA/BA) latexes decreased with the increasing carboxyl group surface coverage at pH 10 due to the alkali‐swelling characteristics of carboxylated latexes. For GCC, used as extender pigment particles in the pigmented latex blend systems, the size of the GCC pigment particles stabilized with NaPA decreased during a sonification process and their ζ‐potential became increasingly negative with the addition of NaPA to the GCC pigment slurry. Particle size and ζ‐potential measurements showed that NaPA can stabilize GCC particles effectively, and the optimum concentration of NaPA to stabilize GCC is around 1 wt % based on solid GCC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 398–404, 2006  相似文献   

11.
We prepared a novel copolymeric latex of vinyl acetate and n‐butyl acrylate (V‐B) using a semibatch emulsion polymerization process. The glass‐transition temperature (Tg), steady viscosity, flow activation energy (Ef), dynamic moduli, and amphiphilic properties of the V‐B latex in the presence of colophony were systematically investigated. The experimental results demonstrate that excellent adhesive behaviors were achieved for the V‐B latex blended with 20 wt % colophony, whereas good adhesive performance was related to the moderate Tg, viscosity, Ef, storage modulus, and low contact angle on the adherent. The debonding mechanisms for V‐B and its colophony‐modified latexes were analyzed. A possible mechanism for the V‐B latex blended with colophony emulsion was determined. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
We have employed steady sate fluorescence (SSF) and UV‐visible (UVV) techniques to determine the film formation behavior of latex blends. Blend films were prepared from mixtures of a high‐Tg pyrene (P) labeled polystyrene (PS) latex and a low‐Tg copolymer of poly(butyl acrylate‐co‐methyl methacrylate) (BuA/MMA4). Eleven different blend films were prepared in various hard/soft latex compositions at room temperature and annealed at elevated temperatures above glass‐transition (Tg) temperature of polystyerene for 10 min. Fluorescence intensity (IP) from P was measured after each annealing step to monitor the stages of film formation. The evolution of transparency of latex films was monitored using photon transmission intensity, Itr. Film morphologies were examined by atomic force microscopy (AFM). A significant change occurs in both IP and Itr intensities at a certain critical weight fraction of hard latex (Rc = 0.3). Above Rc, two distinct film formation stages, which are named as void closure and interdiffusion processes, were seen in fluorescence data. Transparency of the films was decreased with decreasing PS content, indicating that a phase separation process occurs between PS and BuA/MMA4 phases by thermal treatment, which results in turbid films. However, below Rc, no change was observed in IP and Itr upon annealing, whereas transparency increased overall with increasing BuA/MMA4 ratio. We explained this result as the phase separation process between PS and BuA/MMA4 blends. These results were also confirmed by AFM pictures. Film formation stages above Rc were modeled and related activation energies were calculated. POLYM. COMPOS., 27:431–442, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
Ricinodendron heudelotii (R. heudelotii) oil-based novel alkyd–acrylate hybrid latexes were synthesized as waterborne environmental friendly binder for coating systems. Long oil length alkyd resins were synthesized by two-stage alcoholysis–polyesterification reaction with variation of phthalic anhydride (PA) and maleic anhydride (MAH) proportion and further polymerized with methyl methacrylate (MMA) and butyl acrylate (BA) via miniemulsion polymerization. It is found that increasing the proportion of MAH in the alkyd resin enhances monomer conversion and total solid content of the hybrid latex. The latexes exhibited fast drying time at room temperature. The prepared latexes showed a bimodal particle size distribution motion. It is shown that the increase in MAH content in the alkyd moiety has a significant effect on the improved performance properties of hybrid latexes as well as latex films including, fast drying time at room temperature, highly crosslinked network, improved mechanical characteristics before and after UV exposure, better shore A hardness and hydrophobic water repellency contact angle. The results suggested that, the R. heudelotii oil-based alkyd–acrylate hybrid latexes have potential improved properties for manufacture of waterborne coatings and are usable as an alternative to petroleum-based coating systems.  相似文献   

14.
Poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-PBA) and poly(sytrene-co-butyl acrylate) (PSt-co-PBA) latexes in which solid content (SC) varied from 20% up to 40 wt % armored with laponite clay have been successfully synthesized using a simple method, which does not require modification of the clay particles prior to polymerization. Incorporation of quite high amounts of laponite nanoparticles into PMMA-co-PBA and PSt-co-PBA latexes with a certain amount of solids content was achieved. The nanocomposite latexes and polymer samples were characterized using Fourier transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), contact angle, zeta potential, viscosimetry and analytical ultracentrifuge (AUC). Zeta potential values showed that stable latex was obtained and precipitation problem of the nanoparticles in the latex was not seen during the storage. Obtained nanocomposite latex showed fine particle size between 88 and 160 nm. TEM images and XRD results pointed out that the exfoliated nanocomposite structure for latexes was obtained. DSC analyzes showed that the glass-transition temperature (T g) values of nanocomposite films decreased slightly compared with those of pure (PMMA-co-PBA) films. Mechanical properties of laponite clay armored PMMA-co-PBA were tested and compared with those of pure PMMA-co-PBA, indicating that incorporated the Young's modulus and tensile strength are also improved to a noticeable extent after the incorporation of laponite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47423.  相似文献   

15.
Latexes functionalized with isocyanate groups were prepared by carrying out the emulsion terpolymerization of dimethyl meta-isopropenyl benzyl isocyanate (TMI®) with methyl methacrylate and n-butyl acrylate. The film formation of these latexes and the tensile properties of the resulting latex films were studied. The effect of TMI concentration on the film properties was investigated. The locus of the isocyanate groups in the latex particles was controlled by using different polymerization processes. The locus of the functional groups was found to greatly influence the tensile properties of the latex films. Triethyl amine was used as an external catalyst to cure the TMI polymer films. One-component self-curable systems capable of undergoing crosslinking at ambient temperatures were developed by incorporating small amounts of methacrylic acid into the recipe. These systems exhibited significant improvement in tensile properties upon curing. In addition, the shelf-stability of these latexes was found to be excellent. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1869–1884, 1997  相似文献   

16.
Distribution of acid groups in carboxylated vinyl-acrylic latexes has been determined by a combination of aqueous conductometric and nonaqueous potentiometric titrations. Titrations analysis of vinyl acrylic latexes, in comparison to earlier reported studies with carboxylated polystyrene and all acrylic latexes, is complicated by the presence of acetic acid which originates from the hydrolysis of polyvinyl acetate. Most of the copolymerized carboxylic acid is located at the latex particle surface with some of it being buried within the particle. No serum phase polymeric carboxylic acid is detected. Polymerization conditions and the choice of the carboxylic monomer affect acid distribution. Effect of acid distribution on some latex properties is also discussed.  相似文献   

17.
Environmental scanning electron microscopy (ESEM) was employed to study the mechanism of film formation of a carboxylated styrene-butadiene latex copolymer with a glass transition temperature (Tg) of 6 °C. ESEM allows the investigation of wet samples in their native state which is required to study the drying process of latex dispersions. The film forming process was tracked by time-dependent ESEM monitoring of the latex particle morphology and by observing the different stages occurring during the drying process. The focus of our study was an analysis of the three-dimensional (3D) arrangement of the latex particles and a comparison of their appearance on the surface and in the center of the coalesced film. It was found that in the course of film formation, the latex particles arrange in domains which are similar to colloidal crystals. Such domains occur at the stage of dense particle packing. Particle coalescence appears to begin first in these domains before a continuous and homogeneous film is formed which then spreads across the entire substrate. The results suggest that for our carboxylated styrene-butadiene copolymer the current model known for the film forming mechanism which includes four main steps should be complemented by two additional ones, namely the arrangement of particles in crystal-like domains and the beginning of coalescence within these domains. This specific behavior only occurs for monodisperse latices.  相似文献   

18.
Environmental scanning electron microscopy has been employed to study the drying behaviour of a non-film forming polymethyl methacrylate (PMMA) based latex system. The approach adopted for this study differs slightly when compared to those used previously. Here, by allowing the latex to initially film form, it has been possible to make observations and conclusions regarding the structural development of the specimens under investigation not only in 2D, but also in 3D. The results clearly demonstrate that upon drying, particle packing can yield hexagonal close packed (HCP), square close packed (SCP) and random arrangements, including voids and surface defects that result in the formation of a crystal-like structure. Based on the experimental observations some modifications to the latter stages of the film formation mechanism taking place at temperatures (T) lower than the system glass transition temperature (Tg) have been proposed.  相似文献   

19.
Blends of hard (Tg ∼ 60°C) and soft (Tg ∼ 0°C) latexes were studied as a function of particle size ratio (Rsoft/Rhard) and blend ratio (mass soft phase/mass hard phase). Addition of hard phase latex to the soft film forming latex significantly improved block resistance, even at blend ratios as low as 70/30. Film properties were not sacrificed, except at high concentrations of the hard phase (50/50). For a given blend ratio, the particle size ratio had a dramatic effect on the block resistance. For a 70/30 blend ratio, the block resistance of a blend with Rsoft/Rhard=4.0 was equivalent to that of a control latex having the same overall composition, but with a minimum film temperature 20°C higher than the blend. The phenomenon can be explained in terms of the bulk and surface contributions to adhesion. The hard phase increases the elastic modulus (G’) of the film. The magnitude of G’ was found to increase with increasing Rsoft/Rhard, an effect that is consistent with percolation theory. The effect of particle size ratio on the surface contribution to adhesion can be explained by particle packing. Visual models indicate that a high apparent surface concentration of hard particles would be expected for a large value of Rsoft/Rhard, given ideal packing conditions. This effect was confirmed by scanning electron microscopy. Presented at the 74th Annual Meeting of the Federation of Societies for Coatings Technology, on October 25, 1996, in Chicago, IL. Emulsion Polymers Research, 1604 Building, Midland, MI 48674.  相似文献   

20.
Heterogeneous latexes were prepared by a two-stage seeded emulsion polymerization process at 80°C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(styrene-co-methacrylic acid) latexes containing varying amounts of methacrylic acid (MAA) were used as seeds. The second-stage polymer was poly(isoprene-co-styrene-co-methacrylic acid). By using different methods for the addition of the MAA and by varying the amount of MAA, the hydrophilicity of the polymer phases could be controlled. The morphologies and size distributions of the latex particles were examined by transmission electron microscopy. The latexes were in all cases unimodal, and had narrow particle size distributions. The particles displayed different morphologies depending on the polymerization conditions and monomer composition. The hydrophilic properties of the two phases in combination with the internal particle viscosity and crosslinking of the second phase during polymerization were found to be the major factors influencing the particle morphology. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1543–1555, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号