首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究提取纯化木芙蓉叶总黄酮的工艺.方法 采用正交试验优选总黄酮的最佳提取条件并用聚酰胺纯化.结果 最佳提取条件为提取3次,乙醇浓度50%,料液比1∶10,提取时间1.5 h.聚酰胺纯化条件为上样浓度2.25 mg/mL,乙醇解吸浓度70%,解吸速率2 BV/h,洗脱液用量为2.5 BV.结论 利用本实验的优化工艺可使总黄酮纯度达到60%,工艺可行.  相似文献   

2.
优化聚酰胺树脂纯化玫瑰花总黄酮的工艺。采用紫外分光光度法,以芦丁含量为指标,测定玫瑰花提取物中总黄酮的含量。用单因素考察和正交试验相结合的方法筛选出聚酰胺树脂纯化玫瑰花总黄酮的最优工艺参数,对玫瑰花总黄酮进行富集纯化。聚酰胺树脂富集玫瑰花总黄酮的最优工艺条件为:采用质量浓度为4 mg/m L、pH5的上样液,径高比为1∶7,在室温下上样,吸附3 h以上,达到吸附饱和;解吸时先用15%乙醇洗去杂质,再用pH值为5~6的80%乙醇8 BV洗脱。由80%乙醇洗脱液得到的粉末中总黄酮含量达到23.4%,是纯化前的5.7倍左右。  相似文献   

3.
比较4种大孔树脂对红花总黄酮的吸附与解吸效果,从中筛选出适合红花总黄酮分离纯化的树脂,并通过单因素实验对其吸附与解吸工艺进行探讨。结果表明:AB-8是纯化红花总黄酮较好的树脂。静态吸附:最佳树脂用量为1:10(g/mL),最佳上样浓度为3mg/mL,最适pH为4.7,吸附6h,解吸时间4h;动态吸附:上样流速为2BV/h,上样浓度为3mg/mL,70%乙醇以2BV/h流速进行洗脱。用优化出的条件进行红花黄酮的纯化,得到的黄酮纯度63.31%,比纯化前的21.85%提高2.89倍。  相似文献   

4.
聚酰胺分离纯化柑桔皮中总黄酮的工艺研究   总被引:2,自引:0,他引:2  
研究了聚酰胺分离纯化柑桔皮中总黄酮工艺的影响因素,确立了聚酰胺树脂分离纯化桔皮总黄酮的最佳工艺,即上样浓度1.5mg/mL,上柱流速为3BV·h-1,再以3BV体积分数为80%的乙醇解吸附,流速3BV·h-1。桔皮黄酮经上述工艺3次纯化后,总黄酮含量达到45.26%。  相似文献   

5.
优化打瓜总黄酮纯化工艺并对打瓜总黄酮体外抗氧化活性进行初步研究。以去籽去外皮的打瓜瓤为原料,采用乙醇回流提取法提取打瓜总黄酮,得到纯化的最佳动态吸附条件:上样质量浓度为1 mg/m L,上样速度为2 BV/h,最佳洗脱条件:洗脱溶液为60%乙醇溶液,洗脱速度为2 BV/h,洗脱体积为4 BV,纯化后打瓜总黄酮纯度由16.4%提高到52.37%。打瓜总黄酮粗提物与纯化产物均对DPPH·和羟自由基(·OH)有一定的清除能力,且抗氧化性具有量效关系。  相似文献   

6.
采用AB-8型大孔树脂对从鼠曲草中提取的总黄酮产物进行分离纯化研究。考察各种因素对树脂吸附和洗脱效果的影响。通过实验得到最佳吸附工艺条件为上样液流速2BV/h、上样液pH4.5、上样液质量浓度1.7mg/mL;最佳洗脱工艺条件为洗脱液体积分数为60%乙醇、洗脱液流速1BV/h和洗脱液用量1.8BV。分离纯化后的总黄酮产品纯度可达35.42%。  相似文献   

7.
以鼠曲草黄酮的吸附率、解吸率为指标,考察了六种大孔吸附树脂对鼠曲草中总黄酮的纯化性能,筛选出最佳的大孔吸附树脂,采用动态法分析了吸附流速、pH条件、解吸液乙醇浓度和解吸液流速对吸附解吸的影响,同时采用高效液相色谱法进行分析检测表征了纯化的效果。实验结果表明,大孔吸附树脂AB-8对鼠曲草总黄酮有很好的吸附和解吸性能,并确定了最佳的吸附和解吸条件为:样品液pH=4.0、吸附流速为2BV/h、解吸液乙醇浓度为50%、解吸流速为2BV/h。树脂饱和吸附量为14.7mg/g湿树脂,在此条件下鼠曲草黄酮纯度由原来的28.0%提升到59.4%。  相似文献   

8.
对大孔树脂纯化洋甘菊中总黄酮工艺条件进行优化研究。建立紫外-可见分光光度法测定洋甘菊中总黄酮方法;以吸附率、解吸率为评价指标,考察树脂类型、上样浓度、上样体积、洗脱浓度、洗脱体积对纯化工艺的影响。通过绘制静态吸附平衡曲线、泄露曲线和动态解吸曲线,综合评判确定最优工艺。结果表明:AB-8树脂对洋甘菊中总黄酮纯化效果较好,当上样质量浓度为1.8 mg/m L,上样体积流量为1 BV/h;洗脱剂用70%乙醇,体积流量为1.0 BV/h对洋甘菊中总黄酮的吸附率为62.5%、解吸率68%、回收率61%。经AB-8大孔树脂纯化洋甘菊中总黄酮提高25.3%,此方法稳定可靠,可用于洋甘菊总黄酮的工业纯化要求。  相似文献   

9.
藜麦总黄酮提取及大孔树脂纯化工艺的研究   总被引:1,自引:0,他引:1  
目的:研究藜麦总黄酮的提取工艺与大孔树脂纯化工艺。方法:在单因素实验的基础上,通过正交实验法,研究藜麦总黄酮的最佳提取和纯化工艺。结果:最佳提取工艺条件为:超声时间25 min、温度90℃、料液比1∶10(g/m L)、回流时间为2 h、乙醇浓度90%。此条件下,藜麦总黄酮提取量为3.861 mg/g。盐析除蛋白,选择Na Cl添加量为15%。最佳大孔树脂纯化工艺为:p H2、流速2 BV/h、0.3 mg/m L的黄酮水溶液上样、8 BV水洗、丙酮洗脱。此条件下,纯化黄酮吸附率为80.91%。纯度可由初提物的7.12%提高到28.53%。  相似文献   

10.
目的:研究大孔树脂纯化黄刺玫果总黄酮的工艺条件。方法:在单因素实验的基础上,采用Box-behnken设计优化纯化工艺,以总黄酮回收率、总黄酮纯度以及总评归一值为指标,考察上样流速、上样浓度和解吸液浓度3个因素对纯化效果的影响。结果:获得了大孔树脂D101纯化黄刺玫果总黄酮的最优条件:提取液100mL以3.0mg/mL的浓度、2.8BV/h的流速进行上样,用3BV的50%乙醇进行解析,解吸流速为3BV/h,此工艺的的平均回收率为91.27%,经纯化后提取液中总黄酮含量从3.72%提高到50.89%。结论:通过Box-behnken设计优化获得的纯化工艺操作简便,稳定可靠,为黄刺玫果总黄酮的开发提供理论支持。  相似文献   

11.
通过比较八种大孔吸附树脂的吸附和解吸性能,发现大孔吸附树脂D101对花椒叶黄酮的纯化效果最佳。采用动态法对样品液吸附的流速、pH条件、解吸液乙醇浓度和解吸液流速进行了研究。同时采用高效液相色谱法进行分析表征了分离纯化的效果。实验结果表明,大孔吸附树脂D101对花椒叶总黄酮的最佳吸附解吸条件为:样品液pH为4、吸附流速为2BV/h、解吸液60%乙醇,解吸流速2BV/h。经纯化后花椒叶黄酮纯度由23.2%提高到了56.4%。  相似文献   

12.
优选LX-8型大孔树脂纯化辣木叶总黄酮的工艺条件。以上样液流速、上样液浓度、上样溶液的pH、洗脱溶剂乙醇体积分数、洗脱溶剂用量为考查因素,评价树脂对总黄酮的吸附解吸性能,并在单因素实验的基础上进行Box-Behnken响应面实验设计,对总黄酮的大孔树脂纯化工艺进行优化。结果表明,LX-8型大孔树脂可用于辣木叶总黄酮的纯化,最佳工艺:总黄酮浓度1.56 mg/mL的上样液10 BV,调节溶液的pH 2.1,以流速4 BV/h进行上样,然后使用58%乙醇洗脱,用量为4 BV,所得固体样品中总黄酮的总质量分数为83.82%(RSD为1.77%),回收率为80.08%(RSD为1.74%)。优选的辣木叶大孔树脂纯化工艺可有效提高总黄酮的含量,工艺稳定可行,预测性好。  相似文献   

13.
目的:探索制备无酯儿茶素的工艺。方法:在前人研究的基础上,以绿茶碎末为原料,用乙醇树脂法制备无酯儿茶素产品。先用80%乙醇,按照料液比1:20、浸提50min、温度70℃的浸提工艺对茶叶进行浸提,并在树脂筛选实验和柱效实验的基础上,设计动态吸附及解吸实验,优化动态吸附与解吸儿茶素的工艺条件。结果:在该浸提条件下,儿茶素的提取率为20.16%;筛选出聚酰胺树脂来纯化儿茶素,纯化的最佳工艺条件为:上样流速1BV/h、料液浓度为20mg/mL;解吸流速为1BV/h,分别用1.2BV的水、1BV25%的乙醇以及1BV80%的乙醇溶液进行梯度洗脱;制得的无酯儿茶素其儿茶素总量≥80%、EGCG≥60%、CAF≤0.5%、得率≥7%。结论:通过本实验的最佳工艺条件制备的无酯儿茶素完全符合无酯儿茶素的要求。  相似文献   

14.
用80%乙醇(含0.1%乙酸)超声辅助提取黑加仑多酚(简写为BCP),比较五种大孔树脂对BCP的静态吸附和解吸能力,筛选出纯化BCP的最佳树脂;结果表明NKA-9为BCP纯化的最佳树脂,具有较好的吸附、解吸效果;对BCP的纯化动态吸附和洗脱条件进行研究;结果表明吸附BCP条件为上样液p H 3,质量浓度5 mg/m L、吸附流速2BV/h。解吸条件为解吸液洗脱液体积分数70%、解吸流速2 BV/h、解吸液所用体积为200 m L。  相似文献   

15.
采用微波辅助提取法,通过单因素和正交试验优化提取条件,利用聚酰胺-大孔吸附树脂联用法富集纯化提取样品中的总黄酮,研究竹叶花椒中总黄酮的提取和富集纯化工艺。试验确定最佳提取工艺参数为乙醇浓度60%,料液比1∶30(g/mL),微波功率400 W,提取温度80℃,提取时间25 min,总黄酮得率达到9.20%。以60%乙醇为洗脱液,聚酰胺-大孔吸附树脂联合吸附纯化总黄酮收率和纯度分别为43.50%和42.54%,效果优于单独使用吸附剂。  相似文献   

16.
大孔吸附树脂法纯化苦豆子渣总黄酮工艺的研究   总被引:1,自引:0,他引:1  
叶学军  李力  杨晋 《食品科技》2012,(1):210-214
目的:考察5种大孔吸附树脂对苦豆子渣总黄酮的吸附分离性能。方法:以黄酮吸附量、解吸量为考察指标,采用静态和动态吸附分离法确定适合的大孔吸附树脂和纯化工艺条件。结果:AB-8型大孔吸附树脂对苦豆子渣总黄酮有良好的吸附分离性能,其最佳工艺为:最佳上样量为0.864mg/mL(树脂)、上样液流速为2BV/h、解吸液为95%乙醇、解吸液用量为4BV、解吸附流速为2BV/h。结论:AB-8可较好的吸附分离苦豆子渣总黄酮,纯化后黄酮纯度提高1倍以上。  相似文献   

17.
目的:对比研究不同纯化工艺对竹叶中总黄酮及异荭草苷提取效果的影响,筛选最佳纯化工艺,并筛选最佳纯化工艺条件.方法:采用紫外分光光度法测定纯化液中总黄酮的含量;采用高效液相色谱法测定纯化液中异荭草苷的含量,考察乙酸乙酯萃取法和树脂柱分离法的纯化效果,并筛选优选工艺的最佳条件.结果:聚酰胺柱分离法为最佳纯化工艺,其纯化条件为:提取液(浓度2g生药/mL),脱脂,拌样,湿法上柱,先用水洗脱杂质,再用9 BV的50%乙醇洗脱,提取物中总黄酮含量为35%.结论:聚酰胺用于竹叶中黄酮的分离,操作简单方便,分离液纯度高,无污染,便于工业化大生产.  相似文献   

18.
野菊花总黄酮的提取与纯化   总被引:5,自引:0,他引:5  
以野菊花总黄酮含量及回收率等为考察指标,研究野菊花总黄酮提取工艺及大孔吸附树脂分离纯化野菊花总黄酮工艺.结果表明:采取乙醇浸提L9(34)正交试验方法,野菊花总黄酮最佳提取工艺条件为乙醇浓度60%、提取温度80℃、提取时间3 h、提取次数3次.AB-8型大孔吸附树脂对野菊花总黄酮静态饱和吸附量为114.65 mg/g(干树脂),洗脱率94.9%,动态饱和吸附量为94.5 mg/g(干树脂1,总黄酮回收率在92.6%、纯度在90%以上,是实验树脂中分离纯化野菊花总黄酮的最佳大孔吸附树脂.分离纯化野菊花总黄酮最佳工艺条件为AB-8型大孔吸附树脂,洗脱剂为70%乙醇,洗脱剂用量为3倍树脂体积,流速3~4 mL/min,上柱总黄酮量与树脂比为1:10.5,上柱液总黄酮浓度为19.8 mg/mL,流速2~3 mL/min,上柱液pH值4~5,冲洗杂质用水体积2~3 BV.  相似文献   

19.
华中枸骨叶总黄酮的纯化及其抑菌活性研究   总被引:1,自引:0,他引:1  
以吸附率、解吸率、回收率为考察指标,在单因素实验基础上,采用正交设计优化D101大孔树脂纯化华中枸骨叶总黄酮的工艺条件。同时采用牛津杯法,考察纯化前后的提取物对常见细菌的体外抑菌作用。D101大孔吸附树脂纯化华中枸骨叶总黄酮的最佳工艺条件为:总黄酮质量浓度为0.735 mg/mL,pH为1.93,3 BV上样液,径高比1:8.5,上样速度6 BV/h,上样完毕后,静置30 min;洗脱时,先用3 BV去离子水,再用70%乙醇8 BV,洗脱流速6 BV/h,得到总黄酮回收率为91.06%,总黄酮质量分数从48.52%增长到78.26%。体外抑菌结果显示:华中枸骨叶总黄酮纯化物对金黄色葡萄球菌、大肠埃希菌、铜绿假单胞菌、宋内志贺菌的抑菌圈分别为14.07、17.15、7.12、7.57 mm。除大肠埃希菌外,对于其他3种菌的抑菌效果均是粗提物好于纯化物。  相似文献   

20.
研究大孔树脂纯化马兰总黄酮树脂吸附特性及工艺条件及参数。文中分别进行静态吸附、静态解吸、静态吸附动力学过程(Lagergren准一级动力学方程)、静态吸附等温曲线(Langmuir和Freundich等温吸附方程)、动态吸附实验,从7种大孔树脂中筛选用于马兰总黄酮分离的最佳树脂,并系统研究最佳大孔树脂分离纯化的吸附性能和最优洗脱参数。结果表明:D101型大孔树脂为分离马兰黄酮类组分最佳树脂,其分离的最佳工艺为总黄酮浓度为9.36 mg/mL的样液,以3 BV/h的流速,控制pH值为4~5上柱,用75%乙醇以3 BV/h用量进行洗脱,可获得样品总黄酮纯度达70%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号