首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of a robot system using camera information is a challenging task regarding unpredictable conditions, such as feature point mismatch and changing scene illumination. This paper presents a solution for the visual control of a nonholonomic mobile robot in demanding real world circumstances based on machine learning techniques. A novel intelligent approach for mobile robots using neural networks (NNs), learning from demonstration (LfD) framework, and epipolar geometry between two views is proposed and evaluated in a series of experiments. A direct mapping from the image space to the actuator command is conducted using two phases. In an offline phase, NN–LfD approach is employed in order to relate the feature position in the image plane with the angular velocity for lateral motion correction. An online phase refers to a switching vision based scheme between the epipole based linear velocity controller and NN–LfD based angular velocity controller, which selection depends on the feature distance from the pre-defined interest area in the image. In total, 18 architectures and 6 learning algorithms are tested in order to find optimal solution for robot control. The best training outcomes for each learning algorithms are then employed in real time so as to discover optimal NN configuration for robot orientation correction. Experiments conducted on a nonholonomic mobile robot in a structured indoor environment confirm an excellent performance with respect to the system robustness and positioning accuracy in the desired location.  相似文献   

2.
On optimal constrained trajectory planning in 3D environments   总被引:1,自引:0,他引:1  
A novel approach to generating acceleration-based optimal smooth piecewise trajectories is proposed. Given two configurations (position and orientation) in 3D, we search for the minimal energy trajectory that minimizes the integral of the squared acceleration, opposed to curvature, which is widely investigated. The variation in both components of acceleration: tangential (forces on gas pedal or brakes) and normal (forces that tend to drive a car on the road while making a turn) controls the smoothness of generated trajectories. In the optimization process, our objective is to search for the trajectory along which a free moving robot is able to accelerate (decelerate) to a safe speed in an optimal way. A numerical iterative procedure is devised for computing the optimal piecewise trajectory as a solution of a constrained boundary value problem. The resulting trajectories are not only smooth but also safe with optimal velocity (acceleration) profiles and therefore suitable for robot motion planning applications. Experimental results demonstrate this fact.  相似文献   

3.
This paper studies a hierarchical approach for incrementally driving a nonholonomic mobile robot to its destination in unknown environments. The A* algorithm is modified to handle a map containing unknown information. Based on it, optimal (discrete) paths are incrementally generated with a periodically updated map. Next, accelerations in varying velocities are taken into account in predicting the robot pose and the robot trajectory resulting from a motion command. Obstacle constraints are transformed to suitable velocity limits so that the robot can move as fast as possible while avoiding collisions when needed. Then, to trace the discrete path, the system searches for a waypoint-directed optimized motion in a reduced 1-D translation or rotation velocity space. Various situations of navigation are dealt with by using different strategies rather than a single objective function. Extensive simulations and experiments verified the efficacy of the proposed approach.  相似文献   

4.
This article presents a novel method of robot pose trajectory synchronization planning. First of all, based on triple NURBS curves, a method of describing the position and orientation synchronization of the robot is proposed. Then, through considering geometric and kinematic constraints, especially angular velocity constraint, and employing bidirectional interpolation algorithm, a robot pose trajectory planning approach is developed, which has limited linear jerk, continuous bounded angular velocity and approximate optimal time, and does not need an optimization program. Ultimately, two robot pose paths, blade-shaped curve and fan-shaped curve, are utilized for simulations, and the results indicate that the proposed trajectory planning method can satisfy the given constraint conditions, i.e. the linear jerk is limited and the angular velocity is continuous bounded. The trajectory tracking experiments are further carried out on a 6-DOF industrial robot, and the results show that the proposed planning method can generate smooth trajectories to ensure the stability of the robot motion without impact in practical situations.  相似文献   

5.
针对有障碍物环境下非完整轮式 移动机器人的轨迹跟踪问题,提出一种基于速度空间的同时避障和轨迹跟踪方法(VSTTM).首先,根据机器人 的动力学特性构建速度空间,得到由速度元组构成的控制集;然后,构造目标函数并对各控制量进行 评价,其中跟踪误差评价函数评估跟踪效果,碰撞检测函数检测是否发生碰撞,终端状态惩罚项保证 算法的稳定性;最后,通过优化过程找到最优的无碰控制量.仿真结果表明了所提出方法的有效性.  相似文献   

6.

Space-tethered robot system is a new kind of space robot, which consists of a robot platform, space tether, and operation robot. This paper presents the coordinated control method in order to save thruster fuel of operation robot in the process of tracking the optimal approach trajectory. First, the optimal approach trajectory of an operation robot is designed using the Gauss pseudospectral method, which resulted in continuous optimal control force using the Lagrange interpolation scheme. The optimal control force is optimized and distributed to space tether and thrusters through simulated annealing algorithm in discrete points, which minimized fuel consumption of thrusters. The distributive continuous force is obtained via cubic polynomial fitting of optimal distributive force in 0.1s discrete time point. To tracking the optimal trajectory, Fuzzy Proportional-Derivative controller is designed with the help of optimal distribution force which come from optimization model. Simultaneously, the relative attitude of the operation robot is stabilized using attitude time-delay algorithm through the reaction wheels. Numerical results are presented, demonstrating the validity of saving thruster fuel and well performance in tracking the optimal trajectory.

  相似文献   

7.
针对模型参数未知和存在有界干扰的非完整移动机器人的轨迹跟踪控制问题,本文提出了一种鲁棒自适应轨迹跟踪控制器方法.非完整移动机器人的控制难点在于它的运动学系统是欠驱动的.针对这一难点,本文利用横截函数的思想,引入新的辅助控制器,使得非完整移动机器人系统不再是一个欠驱动系统,缩减了控制器设计的难度,进而利用非线性自适应算法和参数映射方法构造李雅谱诺夫函数.通过李雅普诺夫方法设计控制器和参数自适应器,从而使得非完整移动机器人的跟随误差任意小,即可以任意小的误差来跟随任意给定的参考轨迹.仿真结果证明了方法的有效性.  相似文献   

8.
The purpose of this paper is to propose a hybrid trigonometric compound function neural network (NN) to improve the NN-based tracking control performance of a nonholonomic mobile robot with nonlinear disturbances. In the mobile robot control system, two NN controllers embedded in the closed-loop control system have the simple continuous learning and rapid convergence capability without the dynamics information of the mobile robot to realize the tracking control of the mobile robot. The neuron functions of the hidden layer in the three-layer feedforward network structure consist of the compound cosine function and the compound sine function combining a cosine or a sine function with a unipolar sigmoid function. The main advantages of this NN-based mobile robot control system are better real-time control capability and control accuracy by use of the proposed NN controllers for a nonholonomic mobile robot with nonlinear disturbances. Through simulation experiments applied to the nonholonomic mobile robot with the nonlinear disturbances of dynamics uncertainty and external disturbances, the simulation results show that the proposed NN control system of a nonholonomic mobile robot has better real-time control capability and control accuracy than the compound cosine function NN control system of a nonholonomic mobile robot and then verify the effectiveness of the proposed hybrid trigonometric compound function NN controller for improving the tracking control performance of a nonholonomic mobile robot with nonlinear disturbances.  相似文献   

9.
The multi-pipe intersection structure in form of co-main pipe is widely used in various industries. To improve its welding quality and efficiency, this paper is devoted to proposing an offline programming approach to the robot trajectory based on NSGA-Ⅱ and measured 3D point-clouds. First, considering the existence of deviation between the actual workpiece and its ideal model, this paper selects the actual 3D point-cloud of weld seam as the research object and extracts its feature points by combining the characteristic of the spatial curve, which can reduce the data density while preserving their geometric characteristics. Second, to ensure the continuity of motion parameters while taking the calculation and fitting accuracy into account, the cubic NURBS is applied to fit the actual weld position, and a fast-adaptive fitting nodes configuration scheme is designed according to the variation characteristics of the spatial curve and the fitting error restriction. Third, this paper introduces a trajectory adaptive discretization method based on the chord error constraint for robot program generation, and establishes an optimization model of the robot welding trajectory based on NSGA-Ⅱ frame, which gives the robot joint's motion trajectories with optimal welding quality and cable twisting fluctuation. Finally, the experiments are designed to verify the correctness of the aforementioned approach.  相似文献   

10.
The motion of a free-floating space robot is characterized by the principle of conservation of angular momentum. It is well known that these angular momentum equations are nonholonomic, i.e., are nonintegrable rate equations. If the base of the free-floating robot is partially actuated, it is difficult to determine joint trajectories that will result in point-to-point motion of the entire robot system in its configuration space. However, if the drift-less system associated with the angular momentum conservation equations is differentially flat, point-to-point maneuvers of the free-floating robot in its configuration space can be constructed by properly choosing trajectories in the differentially flat space. The primary advantages of this approach is that it avoids the use of nonlinear programming (NLP) to solve the nonintegrable rate equations, which at best can provide only approximate solutions. A currently open research problem is how to design a differentially flat space robot with under-actuated base. The contributions of this technical note are as follows: i) study systematically the structure of the nonholonomic rate constraint equations of a free-floating open-chain space robot with two momentum wheels at the base and arbitrarily oriented joint axes; ii) identify a set of sufficient conditions on the inertia distribution under which the system exhibits differential flatness; iii) exploit these design conditions for point-to-point trajectory planning and control of the space robot.  相似文献   

11.
Abstract

This work investigates the leader–follower formation control of multiple nonholonomic mobile robots. First, the formation control problem is converted into a trajectory tracking problem and a tracking controller based on the dynamic feedback linearization technique drives each follower robot toward its corresponding reference trajectory in order to achieve the formation. The desired orientation for each follower is selected such that the nonholonomic constraint of the robot is respected, and thus the tracking of the reference trajectory for each follower is feasible. An adaptive dynamic controller that considers the actuators dynamics in the design procedure is proposed. The dynamic model of the robots includes the actuators dynamics in order to obtain the velocities as control inputs instead of torques or voltages. Using Lyapunov control theory, the tracking errors are proven to be asymptotically stable and the formation is achieved despite the uncertainty of the dynamic model parameters. In order to assess the proposed control laws, a ROS-framework is developed to conduct real experiments using four ROS-enabled mobile robots TURTLEBOTs. Moreover, the leader fault problem, which is considered as the main drawback of the leader–follower approach, is solved under ROS. An experiment is conducted where in order to overcome this problem, the desired formation and the leader role are modified dynamically during the experiment.  相似文献   

12.
One of the ultimate goals in robotics is to make robots of high degrees of freedom (DOF) work autonomously in real world environments. However, real world environments are unpredictable, i.e., how the objects move are usually not known beforehand. Thus, whether a robot trajectory is collision-free or not has to be checked on-line based on sensing as the robot moves. Moreover, in order to guarantee safe motion, the motion uncertainty of the robot has to be taken into account. This paper introduces a general approach to detect if a high-DOF robot trajectory is continuously collision-free even in the presence of robot motion uncertainty in an unpredictable environment in real time. Our method is based on the novel concept of dynamic envelope, which takes advantage of progressive sensing over time without predicting motions of objects in an environment or assuming specific object motion patterns. The introduced approach can be used by general real-time motion planners to check if a candidate robot trajectory is continuously and robustly collision-free (i.e., in spite of uncertainty in the robot motion).  相似文献   

13.
测绘机器人是实现测绘自动化的执行设备,测绘机器人的工作空间更为复杂,给机器人的跟踪控制工作带来较大挑战。为提高测绘机器人跟踪控制效果,设计了基于遥感GIS信息融合的测绘机器人滑动模跟踪控制系统。加设遥感信息采集器和GIS信息采集器,改装遥感GIS信息处理器以及滑动模跟踪控制器,完成硬件系统的优化设计。考虑信息结构以及信息之间的逻辑关系,构建系统数据库,为遥感GIS信息提供充足的存储空间。根据测绘任务生成机器人滑动模移动轨迹,作为机器人的控制目标。采集测绘机器人实时遥感与GIS信息,利用遥感GIS信息融合技术跟踪机器人实时位姿,比对位姿跟踪结果与生成的控制目标,计算滑动模跟踪控制量,完成系统的测绘机器人滑动模跟踪控制软件功能优化。系统测试结果表明:设计系统的控制误差平均值为1.9 m,抖振幅值为0.8 dB,具有较好的控制效果。  相似文献   

14.
In this paper a real-time seam tracking algorithm is proposed that can cope with the accuracy demands of robotic laser welding. A trajectory-based control architecture is presented, which had to be developed for this seam tracking algorithm. Cartesian locations (position and orientation) are added to the robot trajectory during the robot motion. In this way, sensor information obtained during the robot motion is used to generate the robot trajectory while moving. Experiments have been performed to prove the tracking capabilities of the seam tracking algorithm.  相似文献   

15.
In this paper a new cooperative collision-avoidance method for multiple, nonholonomic robots based on Bernstein–Bézier curves is presented. The main contribution focuses on an optimal, cooperative, collision avoidance for a multi-robot system where the velocities and accelerations of the mobile robots are constrained and the start and the goal velocity are defined for each robot. The optimal path of each robot, from the start pose to the goal pose, is obtained by minimizing the penalty function, which takes into account the sum of all the path lengths subjected to the distances between the robots, which should be larger than the minimum distance defined as the safety distance, and subjected to the velocities and accelerations, which should be lower than the maximum allowed for each robot. The model-predictive trajectory tracking is used to drive the robots on the obtained reference paths. The results of the path planning, real experiments and some future work ideas are discussed.  相似文献   

16.
张金学  李媛媛 《电脑学习》2012,2(1):53-55,58
轮式机器人是一个典型的非完整性系统。由于非线性和非完整特性,很难为移动机器人系统的轨迹跟踪建立一个合适的模型。介绍了一种轮式机器人滑模轨迹跟踪控制方法。滑模控制是一个鲁棒的控制方法,能渐近的按一条所期望的轨迹稳定移动机器人。以之为基础,描述了轮式机器人的动力学模型并在二维坐标下建立了运动学方程,根据运动学方程设计滑模控制器,该控制器使得机器人的位置误差收敛到零。  相似文献   

17.
The problem of robust finite-time trajectory tracking of nonholonomic mobile robots with unmeasurable velocities is studied. The contributions of the paper are that: first, in the case that the angular velocity of the mobile robot is unmeasurable, a composite controller including the observer-based partial state feedback control and the disturbance feed-forward compensation is designed, which guarantees that the tracking errors converge to zero in finite time. Second, if the linear velocity as well as the angular velocity of mobile robot is unmeasurable, with a stronger constraint, the finite-time trajectory tracking control of nonholonomic mobile robot is also addressed. Finally, the effectiveness of the proposed control laws is demonstrated by simulation.  相似文献   

18.
A mobile robot, represented by a point moving along a polygonal line in the plane, has to explore an unknown polygon and return to the starting point. The robot has a sensing area which can be a circle or a square centered at the robot. This area shifts while the robot moves inside the polygon, and at each point of its trajectory the robot “sees” (explores) all points for which the segment between the robot and the point is contained in the polygon and in the sensing area. We focus on two tasks: exploring the entire polygon and exploring only its boundary. We consider several scenarios: both shapes of the sensing area and the Manhattan and the Euclidean metrics.We focus on two quality benchmarks for exploration performance: optimality (the length of the trajectory of the robot is equal to that of the optimal robot knowing the polygon) and competitiveness (the length of the trajectory of the robot is at most a constant multiple of that of the optimal robot knowing the polygon). Most of our results concern rectilinear polygons. We show that optimal exploration is possible in only one scenario, that of exploring the boundary by a robot with square sensing area, starting at the boundary and using the Manhattan metric. For this case we give an optimal exploration algorithm, and in all other scenarios we prove impossibility of optimal exploration. For competitiveness the situation is more optimistic: we show a competitive exploration algorithm for rectilinear polygons whenever the sensing area is a square, for both tasks, regardless of the metric and of the starting point. Finally, we show a competitive exploration algorithm for arbitrary convex polygons, for both shapes of the sensing area, regardless of the metric and of the starting point.  相似文献   

19.
为了提高自主导航机器人的室内定位精度,提出一种基于粒子滤波的超带宽(UWB)/惯导融合定位算法.首先,UWB定位采用双边双向测距算法确定距离信息,通过三边定位算法确定位置信息.其次,惯导定位通过编码器采集运动信息,建立非完整约束下的动力学模型,确定运动轨迹.两种定位信息在上位机中通过粒子滤波进行融合,实现高精度融合定位...  相似文献   

20.
The purpose of this paper is to propose a compound cosine function neural network with continuous learning algorithm for the velocity and orientation angle tracking control of a nonholonomic mobile robot with nonlinear disturbances. Herein, two neural network (NN) controllers embedded in the closed-loop control system have the simple continuous learning and rapid convergence capability without the dynamics information of the mobile robot to realize the adaptive control of the mobile robot. The neuron function of the hidden layer in the three-layer feed-forward network structure is on the basis of combining a cosine function with a unipolar sigmoid function. The developed neural network controllers have simple algorithm and fast learning convergence because the weight values are only adjusted between the nodes in hidden layer and the output nodes, while the weight values between the input layer and the hidden layer are one, i.e. constant, without the weight adjustment. Therefore, the main advantages of this control system are the real-time control capability and the robustness by use of the proposed neural network controllers for a nonholonomic mobile robot with nonlinear disturbances. Through simulation experiments applied to the nonholonomic mobile robot with the nonlinear disturbances which are considered as dynamics uncertainty and external disturbances, the simulation results show that the proposed NN control system of nonholonomic mobile robots has real-time control capability, better robustness and higher control precision. The compound cosine function neural network provides us with a new way to solve tracking control problems for mobile robots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号