首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents the comparative evaluation of microstructural features and mechanical properties of a friction stir welded (solid‐state) and gas tungsten arc welded (fusion weld) 409 M grade ferritic stainless steel joints. Optical microscopy, microhardness, transverse tensile and impact tests were performed. The coarser ferrite grains in the base material are changed to very fine grains consisting of a duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, grain growth was observed in the fusion zone as well as heat affected zone of the gas tungsten arc welded joint resulting in deterioration of mechanical properties.  相似文献   

3.
Friction stir welding undergoes a steep evolution in industrial applications since the invention in the early 1990s. Especially for aluminium alloys in sheet thicknesses over 2 mm a lot of applications are established, whereas a lack in knowledge about friction stir welding of thin sheets with sheet thickness less than 2 mm exists. This article deals with friction stir welding of thin sheet aluminium steel tailored hybrids and their formability. These investigations tend to close the gap of availability of friction stir welded blanks in the range of 1 mm sheet thickness and to offer new applications of this joining technology. For production of aluminium steel tailored hybrids AA5182 with a thickness of 1.2 mm and DC04 in 1.0 mm are used, the joining partners are friction stir welded in a lap joint. Different tool geometries and process parameters are performed to achieve the highest strength and elongation at fracture of the tailored hybrids. The influence of the stirring on the arrangement and distribution of both materials in the welding zone and its microstructure is analysed using light optical and scanning electron microscopy. In addition to tensile tests planar microhardness measurements help to detect the local changes of the mechanical properties in the characteristic zones of the weld seam. Tailored hybrids, which were friction stir welded with the best welding parameters in accordance to the mechanical properties of the weld seams, were used for deep drawing tests of friction stir welded thin sheet aluminium steel tailored hybrids. The maximum drawing ratio of these tailored hybrids coincides with the one of the parent material of AA5182.  相似文献   

4.
 The microstructure analysis and mechanical properties evaluation of laser beam welded AISI 409M ferritic stainless steel joints are investigated. Single pass autogeneous welds free of volumetric defects were produced at a welding speed of 3000 mm/min. The joints were subjected to optical microscope, scanning electron fractographe, microhardness, transverse and longitudinal tensile, bend and charpy impact toughness testing. The coarse ferrite grains in the base metal were changed into dendritic grains as a result of rapid solidification of laser beam welds. Tensile testing indicates overmatching of the weld metal is relative to the base metal. The joints also exhibited acceptable impact toughness and bend strength properties.  相似文献   

5.
Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.  相似文献   

6.
高强度管线钢的微观组织与冲击韧性   总被引:4,自引:0,他引:4  
研究了具有不同微观组织类型的高强度管线钢的夏比冲击韧性.结果表明,针状铁素体型管线钢比多边形铁素体 少量珠光体型管线钢具有更高的冲击韧性.对于针状铁素体型管线钢,可通过减少夹杂物,获得均匀细小的铁素体晶粒、细小弥散的M/A岛和析出物,来获得优异的冲击韧性.  相似文献   

7.
用端淬法研究了微量钙对45钢淬透性的影响,以及对正火态、调质态及淬火低温回火态的显微组织和室温冲击韧性的影响;用俄歇能谱(AES)分析了沿晶断口表面钙的含量.结果表明,微钙钢的淬透性稍低于无钙钢;微钙钢的奥氏体晶粒粗化、珠光体片层间距显著增大,3种热处理状态下的室温冲击韧性均有所降低.这些现象与中碳合金钢中所得结果有明显不同.根据钙在奥氏体晶界的偏聚现象及其与其他元素的偏聚互作用理论,对此进行了讨论.  相似文献   

8.
9.
 Fundamental investigation of continuous drive friction welding of austenitic stainless steel (AISI 304) and low alloy steel (AISI 4140) is described. The emphasis is made on the influence of rotational speed on the microstructure and mechanical properties such as hardness, tensile strength, notch tensile strength and impact toughness of the dissimilar joints. Hardness profiles across the weld show the interface is harder than the respective parent metals. In general, maximum peak hardness is observed on the stainless steel side, while other peak hardness is on the low alloy steel side. A trough in hardness distribution in between the peaks is located on the low alloy steel side. Peak hardness on the stainless steel and low alloy steel side close to the interface increases with a decrease in rotational speed. All transverse tensile joints fractured on stainless steel side near the interface. Notch tensile strength and impact toughness increase with increase in rotational speed up to 1500 r/min and decrease thereafter. The mechanism of influence of rotational speed for the observed trends is discussed in the torque, displacement characteristics, heat generation, microstructure, fractography and mechanical properties.  相似文献   

10.
11.
12%Cr铁素体不锈钢焊接接头组织及韧性研究   总被引:1,自引:0,他引:1  
对四种不同成分的12%Cr铁素体不锈钢做了焊接性试验。分析焊接接头的组织,测量了焊接接头的低温冲击功。试验结果表明,随着碳含量的增加,焊接粗晶区组织由单相铁素体逐渐转变成以马氏体为主,粗晶区宽度变窄,晶粒尺寸变小。细晶区组织以马氏体为主,组织细小均匀。熔合线处和热影响区的低温冲击功相比母材均显著降低。断裂路径分析结果表明,窄的粗晶区宽度和小的晶粒尺寸使断裂路径经过更多的奥氏体焊缝区,提高了整体的冲击韧性。  相似文献   

12.
对5mm厚镁合金AZ31B板材的摩擦焊接技术进行了试验研究,结果表明:适合其板材的搅拌摩擦焊接的搅拌头,材料为W6MoSCr4V2高速钢,结构为凹面圆台形,根部直径5.5mm,端部直径为2.5mm,轴肩尺寸为12mm,长度为4.7mm。镁合金搅拌摩擦焊接头的抗拉强度可达母材的90%,延伸率可达母材的50%。搅拌摩擦焊接头焊合区为动态再结晶组织,在接头前进边焊合区与母材有明显的分界线,返回边过渡区有金属微熔的迹象。  相似文献   

13.
This study was aimed at characterizing the microstructure, texture and tensile properties of a friction stir welded AZ31B-H24 Mg alloy with varying tool rotational rates and welding speeds. Friction stir welding (FSW) resulted in the presence of recrystallized grains and the relevant drop in hardness in the stir zone (SZ). The base alloy contained a strong crystallographic texture with basal planes (0002) largely parallel to the rolling sheet surface and $ \langle {11\bar{2}0} \rangle $ directions aligned in the rolling direction (RD). After FSW the basal planes in the SZ were slightly tilted toward the TD determined from the sheet normal direction (or top surface) and also slightly inclined toward the RD determined from the transverse direction (or cross section) due to the intense shear plastic flow near the pin surface. The prismatic planes $ (10\bar{1}0) $ and pyramidal planes $ (10\bar{1}1) $ formed fiber textures. After FSW both the strength and ductility of the AZ31B-H24 Mg alloy decreased with a joint efficiency in-between about 75 and 82 pct due to the changes in both grain structure and texture, which also weakened the strain rate dependence of tensile properties. The welding speed and rotational rate exhibited a stronger effect on the YS than the UTS. Despite the lower ductility, strain-hardening exponent and hardening capacity, a higher YS was obtained at a higher welding speed and lower rotational rate mainly due to the smaller recrystallized grains in the SZ arising from the lower heat input.  相似文献   

14.
搅拌摩擦焊技术在有色金属焊接上的应用   总被引:2,自引:0,他引:2  
裴泽慧 《有色矿冶》2006,22(6):57-59
搅拌摩擦焊技术发明至今15年以来,无论在国外还是在国内,已经成功跨出试验研究阶段。发展成为在有色金属特别是在铝合金结构制造中可以替代熔焊技术的工业化实用的固相连接技术;这项新型的焊接技术在航空航天飞行器、高速舰船快艇、高速轨道列车、汽车等轻型化结构以及各种铝合金型材拼焊结构制造中,已经展示出显著的技术和经济效益。它的出现将使铝合金等有色金属的连接技术发生革命性的进步  相似文献   

15.
The effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is studied. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the welded joints have been evaluated and the results are compared. From this investigatio.n, it is found that gas tungsten arc welded joints of ferritic stainless steel have superior tensile and impact properties compared with shielded metal are and gas metal arc welded joints and this is mainly due to the presence of finer grains in fusion zone and heat affected zone.  相似文献   

16.
 Clean high carbon heavy rail steel was prepared by the process of vacuum induction furnace smelting, forging and rolling. Mechanisms of RE on the impact toughness and fracture toughness for clean high carbon steel were investigated. In addition, the appropriate range of RE content for clean high carbon steel was determined. Both the austenite grain size and pearlite lamellar spacing decreased due to small amount of RE, consequently the impact toughness and fracture toughness were improved evidently. When the RE content exceeded a critical value, the pearlite lamellar spacing was increased, because RE was segregated on the austenite grain boundaries, damaged the orientation relationship of pearlite transformation, caused the disorder growth and morphology degenerating of pearlite. With the increasing of RE content, both the impact toughness and fracture toughness of clean high carbon steel were gradually increased at first and then decreased. It was found that when the RE content was between 00081% and 00088%, both the impact toughness and fracture toughness of clean high carbon heavy rail steel were the best. The maximum ballistic work was 212 J (20 ℃) and 122 J (-20 ℃), respectively. The maximum plane-strain fracture toughness was 4567 MPa·m1/2 (20 ℃) and 3704 MPa·m1/2 (-20 ℃), respectively.  相似文献   

17.
在用铸轧方法生产PS版基用1050铝合金铸轧板坯过程中出现了影响版基材料性能的质量缺陷。通过原因分析,优化生产工艺条件,缺陷得到控制,产品质量有所提高。  相似文献   

18.
An experiment was carried out on the friction stir welding of MB3 magnesium alloy to determine welding parameters for obtaining an excellent weld appearance without void, cracking, or distortion. Frictional heat and plastic flow created fine and equiaxed grains in the weld nugget, and the elongated and recovered grains in the thermomechanically affected zone (TMAZ). The grains in the heat affected zone (HAZ) grow slightly. The me- chanical property results show that maximum joint tensile strength can reach 97. 2% of the parent material, which is stronger than that of fusion joints; and the failure almost occurs in the heat affected zone.  相似文献   

19.
在分析现有搅拌摩擦焊角接焊接的方法的基础上,提出了一种新的搅拌摩擦焊(FSW)角接焊接外侧焊接方法(FSOCW)。  相似文献   

20.
铝锂合金搅拌摩擦焊接热循环   总被引:1,自引:0,他引:1  
搅拌摩擦焊接过程中,焊件上任一位置于搅拌头行走到该位置所在垂直于焊缝直线的瞬间,热循环温度达到最大值,并随着搅拌头远离而迅速降低。焊缝起点受搅拌头扎入行为的影响,而焊缝终点受搅拌头提起行为的影响,二者经受的热循环温度低于焊缝其它部位。然而焊缝起点和终点间的材料经受稳定的热循环作用。焊缝中心经受的焊接热循环温度最高,为415℃。焊缝两侧材料经受不同的热循环作用,前进侧略高于后退侧7~12℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号